Virtues and Pitfalls of Weak-to-Strong Generalization: From Intrinsic Dimensions to Spurious Correlations

Qi Lei

Courant Math & CDS

CDS Seminar

https://arxiv.org/abs/2502.05075 https://arxiv.org/abs/2509.24005

Superalignment \Rightarrow Weak-to-Strong (W2S)

- **Setup:** Strong, pre-trained student learns from *weaker* teacher via pseudo-labels.
- **Phenomenon:** Student often outperforms teacher (*weak-to-strong*) generalization).
- Question: When and how does W2S happen? What governs its gain? Superalignment

[Burns et al. ICML2024] Human level

Qi Lei (NYU)

Student

Supervisor

Traditional ML

W2S: When and Why

Student

Supervisor

CDS Seminar

Student

Supervisor

W₂S

Two explanations

• Lower approximation error: Student has new knowledge beyond teacher.

Two explanations

• Lower approximation error: Student has new knowledge beyond teacher. (Lang et al., 2024, Shin et al., 2024, Ildiz et al., 2024, Wu & Sahai, 2024, and more)

Two explanations

- Lower approximation error: Student has new knowledge beyond teacher. (Lang et al., 2024, Shin et al., 2024, Ildiz et al., 2024, Wu & Sahai, 2024, and more)
- Lower estimation error: Student uses knowledge more efficiently during FT. ¹

Qi Lei (NYU) W2S: When and Why CDS Seminar

¹" Discrepancies are Virtue: Weak-to-Strong Generalization through Lens of Intrinsic Dimension", Yijun Dong, Yicheng Li, Yunai Li, Jason D Lee, Qi Lei, ICML 2025

Intrinsic-dimension parameterization

Intrinsic Dimension

The minimal parameter count needed to achieve (near-)optimal downstream performance.

Intrinsic Dimension

Qi Lei (NYU)

Finetuning with low intrinsic dimensions

Downstream task

- $(x,y) \sim \mathcal{D}(f_*)$ s.t. $y = f_*(x) + z$ with i.i.d. $z \sim \mathcal{N}(0,\sigma^2)$
- Learn $f_*: \mathcal{X} \to \mathbb{R}$ from two datasets:

Labeled (small): $\tilde{X} \in \mathcal{X}^n$ with noisy labels $\tilde{y} \in \mathbb{R}^n$

Unlabeled (large): $X \in \mathcal{X}^N$ with unknown labels $v \in \mathbb{R}^N$

Finetuning (FT) \approx linear probing on low-rank gradient features

- Pretrained feature representations/gradient features for (weak) teacher and (strong) student: ϕ_w, ϕ_s .
- Kernel regime: $f_{\theta}(x) = \phi(x)^{\top}\theta$ with finetunable $\theta \in \mathbb{R}^{D}$.
- Weak model $\phi_w: \mathcal{X} \to \mathbb{R}^d$ produces $\tilde{\Phi}_{w} = \phi_{w}(\tilde{X}) \in \mathbb{R}^{n \times D}, \ \Phi_{w} = \phi_{w}(X) \in \mathbb{R}^{N \times D} \Sigma_{w} = \mathbb{E}[\phi_{w}(x)\phi_{w}(x)^{\top}]$
- Strong model $\phi_s: \mathcal{X} \to \mathbb{R}^D$ produces $\tilde{\Phi}_{s} = \phi_{s}(\tilde{X}) \in \mathbb{R}^{n \times D}, \ \Phi_{s} = \phi_{s}(X) \in \mathbb{R}^{N \times D}$ $\operatorname{rank}(\Sigma_w) = d_w \ll D \quad \operatorname{rank}(\Sigma_s) = d_s \ll D$

$$\sum_{w} = \mathbb{E}[\phi_{w}(x)\phi_{w}(x)]$$

 $\operatorname{rank}(\Sigma_{w}) = d_{w} \ll D$

 $\Sigma_{s} = \mathbb{E}[\phi_{s}(x)\phi_{s}(x)^{\top}]$ $\operatorname{rank}(\Sigma_s) = d_s \ll D$

Qi Lei (NYU)

W2S: When and Why

CDS Seminar

W2S finetuning as regression

Weak teacher
$$f_w(x) = \phi_w(x)^{\top} \theta_w$$

 $\theta_w = \arg\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \|\tilde{\Phi}_w \theta - \tilde{y}\|_2^2 + \alpha_w \|\theta\|_2^2$

$$\begin{aligned} \text{W2S} \quad & f_{w2s}(\textbf{x}) = \phi_s(\textbf{x})^\top \theta_{w2s} \\ & \theta_{w2s} = \arg\min_{\theta \in \mathbb{R}^d} \frac{1}{N} \big\| \Phi_s \theta - \Phi_w \theta_w \big\|_2^2 + \alpha_{w2s} \|\theta\|_2^2 \end{aligned}$$

$$\begin{aligned} & \textbf{Strong SFT} \quad f_s(\mathbf{x}) = \phi_s(\mathbf{x})^\top \theta_s \\ & \theta_s = \arg\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \big\| \tilde{\Phi}_s \theta - \tilde{\mathbf{y}} \big\|_2^2 + \alpha_s \|\theta\|_2^2 \end{aligned}$$

$$\begin{array}{ll} \textbf{Strong ceiling} & f_c(x) = \phi_s(x)^\top \theta_c \\ \theta_c = \arg\min_{\theta \in \mathbb{R}^d} \frac{1}{n+N} \bigg\| \begin{bmatrix} \dot{\Phi}_s \\ \Phi_s \end{bmatrix} \theta - \begin{bmatrix} \tilde{y} \\ y \end{bmatrix} \bigg\|_2^2 + \alpha_c \|\theta\|_2^2 \end{array}$$

W2S v.s. SFT

How to evaluate the performance gain compared to the ideal case?

PGR (Performance Gap Recovery)

$$= \frac{\Delta_{\text{Weak} \to \text{W2S}}}{\Delta_{\text{Weak} \to \text{Ceiling}}}$$

Qi Lei (N<u>YU)</u>

W2S: When and Why

CDS Seminar

Weak v.s. strong: model capacity + similarity

Representation efficiency — low intrinsic dimensions:

$$\operatorname{rank}(\Sigma_w) = d_w \ll D$$
, $\operatorname{rank}(\Sigma_s) = d_s \ll D$.

Representation <u>error</u> — FT approximation error: $0 \le \rho_s \le \rho_w \le 1$ where

$$\rho_s := \min_{\theta \in \mathbb{R}^d} \mathbb{E} \Big[(\phi_s(x)^\top \theta - f_*(x))^2 \Big] , \qquad \rho_w := \min_{\theta \in \mathbb{R}^d} \mathbb{E} \Big[(\phi_w(x)^\top \theta - f_*(x))^2 \Big] .$$

We are interested in the variance-dominated regime $\rho_s + \rho_w \ll \sigma^2$.

$$\Sigma_s = V_s \Lambda_s V_s^{\top} \quad (D \times D), \qquad \Sigma_w = V_w \Lambda_w V_w^{\top} \quad (D \times D).$$

The correlation dimension of (ϕ_s, ϕ_w) is

$$d_{s \wedge w} = \|V_s^\top V_w\|_F^2, \qquad 0 \leqslant d_{s \wedge w} \leqslant \min\{d_s, d_w\}.$$

Qi Lei (NYU)

Intuition: How does variance reduction in W2S happen?

$$\mathcal{V}_s = \operatorname{Range}(\Sigma_s), \quad \mathcal{V}_w = \operatorname{Range}(\Sigma_w)$$

$$\operatorname{Var}(f_{w2s}) \approx \left[\frac{d_{s \wedge w}}{n} + \left[\frac{d_s}{N}\right] \times \left[\frac{d_w - d_{s \wedge w}}{n}\right]\right]$$

Var. in $\mathcal{V}_w \cap \mathcal{V}_s$ W2S Var. in $\mathcal{V}_w \setminus \mathcal{V}_s$

Pseudolabel error in $\mathcal{V}_w \setminus \mathcal{V}_s$ can be viewed as **independent label noise** w.r.t. the orthogonal strong features \mathcal{V}_s . The resulting variance reduces proportionally to d_s/N .

Qi Lei (NYU) W2S: When and Why

Interpretation of Results: Performance Gap Recovery

Definition of PGR

Performance gap recovery (PGR) =
$$\frac{ER(f_w) - ER(f_{w2s})}{ER(f_w) - ER(f_c)}.$$

Qi Lei (NYU) W2S: When and Why CDS Seminar

Interpretation of Results: Performance Gap Recovery

Definition of PGR

Performance gap recovery (PGR) =
$$\frac{ER(f_w) - ER(f_{w2s})}{ER(f_w) - ER(f_c)}.$$

$$f_{w} = f_{w2s} - f_{c}$$
 Generalization

Key Relationship

$$\mathsf{PGR} \, \geqslant \, 1 - O\!\left(rac{d_{\mathsf{s} \wedge w}}{d_w}
ight), \quad \mathsf{where} \, \, d_{\mathsf{s} \wedge w} = \|V_\mathsf{s}^ op V_w\|_F^2,$$

when the approximation error is negligible, and for large enough n, N.

Interpretation:

- Relatively smaller $d_{s \wedge w} \Rightarrow$ better W2S recovery.
- 1) efficient student feature representation $d_s \downarrow$;

2) complementary student-teacher feature representation $d_s-d_{s\wedge w}\uparrow$

Beyond Intrinsic Dimension

 Real data often carry systematic biases (group imbalance, spurious features).

Qi Lei (NYU)

Beyond Intrinsic Dimension

- Real data often carry systematic biases (group imbalance, spurious features).
- Question: does W2S still hold under spurious correlations?

medical diagnosis

autonomous driving

Test (fail)

Why study W2S under spurious correlations?²

- General pretraining (diverse): teacher f_w and student f_s originate from broad, heterogeneous corpora.
- Specialized downstream task: labels scarce; data acquisition induces selection/group bias ⇒ spurious features.
- Two bias sources in W2S: labeled set for f_w (η_ℓ) and unlabeled pool for pseudo-labels (η_u); we study their effect.

Specialized downstream task

(label-scarce, biased)

Qi Lei (NYU)

²"Does Weak-to-strong Generalization Happen under Spurious Correlations?" Chenruo Liu, Yijun Dong, Qi Lei, Arxiv Preprint

Setup: A Thought Experiment

- Core feature z(x): Ca = camel, Co = cow
- Majority: Ca@desert, Co@grass Minority: Ca@grass, Co@desert
- $\eta_{\ell}, \eta_{\mu}, \eta_{t}$: minority fractions in labeled, unlabeled, and test sets

Teacher labeled set η_ℓ

 $\eta_{\ell} = 0.25$ (minority fraction)

Unlabeled pseudolabeling set η_u

 $\eta_u = 0.33$ (minority fraction)

Test / evaluation distribution η_t

 $\eta_t = 0.50$ (minority fraction)

Theoretical Setup: Regression under Spurious Correlation

• Core feature $z(x) \in \mathbb{R}^{d_z}$: semantic signal that drives the label

$$y = z(x)^{\top} \beta_* + \epsilon, \quad \epsilon \sim \mathbb{N}(0, \sigma_y^2).$$

• Group feature $\xi(x) \in \mathbb{R}^{d_{\xi}}$: depends only on group $g \in \{0,1\}$,

$$\xi(x) \sim \mathbb{N}(g\mu_{\xi}, \sigma_{\xi}^2 I).$$

Not predictive alone, but spurious correlation appears through *interaction terms* $z(x) \otimes \xi(x)$.

• Teacher vs. student representations:

$$\varphi_w(x) = [z; z \otimes (\mathbb{W}^\top \xi)], \qquad \varphi_s(x) = [z; z \otimes (\S^\top \xi)],$$

with group-dimensions $p_w - 1$ vs. $p_s - 1$ ($p_s \leqslant p_w$). Projection means: $\mu_w = \mathbb{W}^\top \mu_{\xi}, \ \mu_s = \S^\top \mu_{\xi}.$

• Overlap: $\Xi = \mathbb{W}^{\top} \S, \quad p_{s \wedge w} = 1 + \|\Xi\|_F^2$.

Risk evaluation: for test distribution $\mathbb{D}(\eta_t)$

$$\mathsf{ER}_{\eta_t}(f) = \mathbb{E}_{(x,y) \sim \mathbb{D}(\eta_t)}[(f(x) - f^*)^2]$$

Main Results: W2S under Spurious Correlation

Teacher (weak, after SFT):

$$\mathsf{ER}_{\eta_t}(f_w) \ \to \ \sigma_y^2 \frac{d_z}{n} \Bigg(\underbrace{p_w}_{\substack{\mathsf{variance term}}} \ + \underbrace{\begin{bmatrix} \|(\eta_t - \eta_\ell)\mu_w\|_2^2 \\ \sigma_\xi^2 \end{bmatrix}}_{\substack{\mathsf{spurious term}}} \Bigg)$$

Student (strong, after W2S):

$$\mathsf{ER}_{\eta_t}(f_s) \ \to \ \sigma_y^2 \frac{d_z}{n} \left(\begin{array}{c} \rho_{\mathsf{s} \wedge \mathsf{w}} \\ \hline \rho_{\mathsf{s} \wedge \mathsf{w}} \end{array} \right. + \underbrace{ \begin{bmatrix} \|(\eta_u - \eta_\ell)\mu_w + (\eta_t - \eta_u) \Xi \mu_s \|_2^2 \\ \sigma_\xi^2 \\ \hline \\ \mathsf{spurious \ term} \end{array} }_{\mathsf{small \ term}} + \underbrace{ \left. \begin{array}{c} \Theta(\frac{d_z}{N}) \\ \hline \\ \Theta(\frac{d_z}{N}) \\ \hline \\ \mathsf{small \ term} \\ \end{array} \right)$$

Qi Lei (NYU) W2S: When and Why CDS Seminar

When Does W2S Work under Spurious Correlation?

$$\begin{split} \mathsf{ER}_{\eta_t}(f_w) \; \to \; \sigma_y^2 \frac{d_z}{n} \Bigg(\underbrace{p_w}_{\text{variance term}} + \underbrace{\frac{\|(\eta_t - \eta_\ell)\mu_w\|_2^2}{\sigma_\xi^2}}_{\text{spurious term}} \Bigg) \\ \mathsf{ER}_{\eta_t}(f_s) \; \to \; \sigma_y^2 \frac{d_z}{n} \Bigg(\underbrace{p_{s \wedge w}}_{\text{variance}} + \underbrace{\frac{\|(\eta_u - \eta_\ell)\mu_w + (\eta_t - \eta_u)\Xi\mu_s\|_2^2}{\sigma_\xi^2}}_{\text{spurious term}} + \underbrace{\Theta(\frac{d_z}{N})}_{\text{small term}} \Bigg) \\ \mathsf{variance} \leqslant p_w \qquad \mathsf{spurious term} \qquad \mathsf{small term} \end{split}$$

- If $\eta_{\mu} = \eta_{\ell}$: W2S always happens with enough data.
- If $\eta_u \neq \eta_\ell$: W2S may fail, gain shrinks with mismatch.
- ullet Teacher–student representation similarity Ξ also controls robustness.

Qi Lei (NYU) W2S: When and Why CDS Seminar

Synthetic Experiments: Impact of Minority Ratio

Figure 1: W2S gains across different combinations of η_ℓ and η_t . Each panel shows theoretical (solid lines) and empirical (circles) results for W2S gain as a function of η_u , across different ν_z values. Here we fix μ_T , μ_S , Ξ , and d_z with $\|\mu_T\|_2^2 = 10.0$, $\|\mu_S\|_2^2 = 0.1$, $\|\Xi\|_F^2 = 0.1 p_S$. Vertical dashed lines indicate the theoretical optimal η_u^* values that maximize W2S gain.

Real Experiments: Impact of Minority Ratio

Benchmarks: Waterbirds, BFFHQ, ImageNet-9, BG-COCO.

Figure 2: Average W2S gain across all teacher-student pairs as a function of η_u on all four datasets. Top row: average accuracy; bottom row: worst group accuracy. Left column fixes $\eta_\ell=0.5$; right column fixes $\eta_\ell=\eta_o$.

Qi Lei (NYU) W2S: When and Why CDS Seminar

Enhanced W2S under Spurious Correlations

Motivation: Vanilla W2S performance drops when

- $\eta_u \neq \eta_\ell$: mismatch between unlabeled and labeled group proportions;
- pseudo-label noise is structured, often concentrated in minority groups.

Key idea: strengthen W2S by a *second-stage retraining* that focuses on more reliable signals and is robust to residual noise.

- (i) **Confidence-based selection:** choose a fraction *p* of unlabeled samples with highest student confidence (low-entropy predictions), filtering for clearer feature use.
- (ii) **Generalized cross-entropy (GCE):** replace CE with GCE on this subset, down-weighting occasional high-confidence but incorrect pseudo-labels.

Enhanced-W2S Algorithm

Effect:

- reduces over-reliance on spurious correlations;
- improves both average and worst-group accuracy;
- consistent gains across datasets and backbones, without group labels.

Dataset	η_ℓ	η_u	Teacher-Student pair									
			DINOv2 ConvNeXt	DINOv2 Clipb32	DINOv2 ResNet18	DINOv2 MAE	ConvNeXt Clipb32	ConvNeXt ResNet18	ConvNeXt MAE	Clipb32 ResNet18	Clipb32 MAE	ResNet18 MAE
Waterbirds	0.5	η_o	6.60	11.29	7.34	16.68	3.79	2.05	6.28	_	2.07	0.77
	η_o	0.5	7.19	13.86	11.73	11.62	2.85	2.02	4.33	_	1.32	14.54
BFFHQ	0.5	η_o	6.85	2.75	8.42	4.93	4.05	_	_	6.54	5.12	_
	η_o	0.5	3.92	8.53	2.02	4.56	2.09	_	_	2.06	-1.37	_
BG-COCO	0.5	η_o	5.38	13.40	12.88	24.01	9.82	6.49	15.25	3.39	12.43	2.05
	η_o	0.5	10.21	16.99	12.25	-3.52	3.41	1.21	-3.07	3.48	0.31	3.70
ImageNet-9	0.5	η_o	_	6.03	7.45	24.11	4.74	5.30	18.49	4.22	21.73	17.98
	η_o	0.5	_	8.21	11.28	22.00	3.77	1.81	10.50	4.51	23.24	15.76

Table 1: Relative improvement of Enhanced-W2S over vanilla W2S (%, measured by average accuracy) across all datasets and teacher–student pairs

Unifying View

- Part I: W2S enabled by low intrinsic dimension + representation discrepancy.
- Part II: W2S affected by distribution mismatch + spurious correlations.
- Together: W2S governed by (i) representation efficiency, (ii) representation similarity, (iii) distribution alignment.

Conclusion and Outlook

- Why W2S happens: intrinsic dimension + discrepancy.
- When W2S is vulnerable: spurious correlations, imbalanced groups.
- Outlook: multiple weak teachers, broader distribution shifts, alternative training (AI for education), fairness/safety.

Conclusion and Outlook

- Why W2S happens: intrinsic dimension + discrepancy.
- When W2S is vulnerable: spurious correlations, imbalanced groups.
- Outlook: multiple weak teachers, broader distribution shifts, alternative training (AI for education), fairness/safety.

Thank you! Questions?