Data Reconstruction Attacks and Defenses: From Theory to Practice

Qi Lei, Courant Math and CDS

With Zihan Wang, Sheng Liu, Jianwei Li, Jason Lee

58th Annual Conference on Information Sciences and Systems

https://arxiv.org/abs/2212.03714 https://arxiv.org/abs/2402.09478 https://arxiv.org/abs/2312.05720

Federated learning

[Konečný et al. 2016, McMahan et al. 2017]

• Privacy leakage in distributed learning - Data and model not co-located

Privacy leakage in distributed learning

• Does local update reveal the training data?

Threat model more formally:

- Local batch of data:
 - $S = \{(x_1, y_1), (x_2, y_2), \cdots, (x_B, y_B)\}$
- Prediction function:
 - $x \to f(x; \Theta)$

Adversary

- Local update: • G := $\frac{1}{B} \nabla_{\Theta} \sum_{i=1}^{B} \ell(f(x_i, \Theta), y_i)$
- Inverse problem:
 - Recover S from G, Θ is known

Private learner

Fundamental questions

• When is the model gradient G sufficient to identify the training samples?

• If so, is there an efficient algorithm to recover the samples?

Fundamental questions

- When is the model gradient G sufficient to identify the training samples?
 - → defending with information-theoretic bottleneck guarantees
- If so, is there an efficient algorithm to recover the samples?
 - → defending with computational barriers

Prior work

- Attacking methods
 - Learn to generate the training samples from a local user
 - Match the gradient: $\min_{S = \{(x_i, y_i)\}} \left\| G \sum_{i=1}^{B} \nabla \ell(f(x_i; \Theta), y_i) \right\|^2$
- Defending methods
 - Quantizing/pruning the gradient
 - Dropout
 - Secure aggregation
 - Multiple local aggregation
 - Add noise

[Zhu et al., 2019; Yin et al., 2021; Jeon et al., 2021]

Prior work

- Theoretical analysis
 - Differential Privacy: more tailored for membership inference attack
 - Renyi-DP: reconstructing last sample with other samples known

Illustrating example:

- $S = \{x_1, x_2, \dots, x_B\}, G = x_1 + x_2 + \dots + x_B$
- No DP guarantee, not possible to reconstruct (unless with prior information)

Prior work

- Theoretical analysis
 - Differential Privacy: more tailored for membership inference attack
 - Renyi-DP: reconstructing last sample with other samples known

A more common trajectory in security:
→ stronger attack → stronger defense → ...

Warm-up:

- Two-layer neural network $f(x; \{W, a\}) = \sum_{j=1}^{m} a_j \sigma(w_j^{\top} x) = a^{\top} \sigma(W^{\top} x)$
- Choose proper $\Theta = \{w_j, a_j\}$ to query the gradient at

$$\nabla_{a_j} L = \sum_{i=1}^B l'_i \sigma(w_j^{\mathsf{T}} x_i)$$

Our findings: recover third moment of data

- We want to estimate $T_p := \sum_{i=1}^{B} E_w \left[\sigma^{(p)}(w^{\top} x_i) \right] x_i^{\otimes p}$
- Uniquely identify $\{x_1, x_2, \dots, x_B\}$ through tensor decomposition when data is linearly independent for p>=3. [Kuleshov et al. 2015]

• Our strategy: choose
$$a_j = \frac{1}{m}, w_j \sim N(0, I)$$
, estimate *T* by
 $\widehat{T_3} \coloneqq \frac{1}{m} \sum_{j=1}^m g(w_j) H_3(w_j), g(w_j) \coloneqq \nabla_{a_j} L$

[Wang et al. 2023] <u>https://arxiv.org/abs/2212.03714</u>

Tensor decomposition

- Stein's lemma: $E_{w \sim N(\mathbb{O},I)}[g(a^{\top}w)H_p(w)] = E[g^{(p)}a^{\otimes p}].$
- Hermite function: $H_2(w) = ww^{\top} I, H_3(w) = w^{\otimes 3} w \otimes \overline{S} I.$

•
$$\widehat{T_p} \coloneqq \frac{1}{m} \sum_{j=1}^m g(w_j) H_p(w_j) \approx E_{w \sim N(\mathbb{O},I)} [g(w)H_p(w)]$$

$$\equiv \sum_{i=1}^m E \left[\sigma^{(p)}(w^{\mathsf{T}}x_i) x_i^{\otimes p} \right] =: T_p$$

• $g(w_j) \coloneqq \nabla_{a_j} L = \sum_{i=1}^B l'_i \sigma(w_j^\top x_i)$ is our observation from the model gradient

[Wang et al. 2023] https://arxiv.org/abs/2212.03714

Theoretical analysis on attack

- Applies when $E[\sigma^{(3)}(w)]$ or $E[\sigma^{(4)}(w)] \neq 0$. Applies to sigmoid, tanh, ReLU, leaky ReLU, GeLU, SELU, ELU etc.
- Reconstruction error $\leq \tilde{O}(\sqrt{d/m})$.

Theoretical analysis on defense

- No defense:
- K-Local aggregation:
- Add σ^2 -noise:
- K-Secure aggregation:
- p-Dropout:
- Gradient pruning:

error
$$\leq \tilde{O}(\sqrt{d/m})$$

error $\leq \tilde{O}(K\sqrt{d/m})$
error $\leq \tilde{O}(\sqrt{(1+\sigma^2)d/m})$
error $\leq \tilde{O}(K\sqrt{d/m})$
error $\leq \tilde{O}(\sqrt{d/pm})$

not applicable

Beyond two-layer networks

- Previous findings: if last two layers are fully connected, can recover the features from the (l 2)-th layer
- Other structured data modalities: recover the embeddings first [Liu et al. 2024] <u>https://arxiv.org/abs/2402.09478</u>

Empirical results:

[Liu et al. 2024] https://arxiv.org/abs/2402.09478

Privacy-utility trade-offs

[Liu et al. 2024] https://arxiv.org/abs/2402.09478

Privacy-utility trade-offs

[Liu et al. 2024] https://arxiv.org/abs/2402.09478

Beyond computer vision tasks...

Dataset	Method	R-1	R-2	R-L	Coss	Recovered Samples
	reference sample: The box contains the ball					
CoLA	LAMP	15.5	2.6	14.4	0.36	likeTHETw box contains divPORa
	Ours	17.4	3.8	15.9	0.41	like Mess box contains contains balls
	reference sample: slightly disappointed					
SST2	LAMP	20.1	2.2	15.9	0.56	likesmlightly disappointed a
	Ours	19.7	2.1	16.8	0.59	like lightly disappointed a
	reference sample: vaguely interesting, but it's just too too much					
Toma	LAMP	19.9	1.6	15.1	0.48	vagueLY', interestingtooMuchbuttoojusta
	Ours	21.5	1.8	16.0	0.51	vagueLY, interestingBut seemsMuch Toolaughs

More results in: [Li et al. 2024] https://arxiv.org/abs/2312.05720

Discussions

- Gradient pruning is the most effective defending method (theoretically, empirically: better privacy-utility trade-off)
- Call for more tailored concept of privacy in reconstruction attack in federated learning
- Information-theoretical or computational lower bound in reconstruction attack

Thank you