Theoretical Foundations of Pre-trained Models

Qi Lei

Princeton University

Slides available at: cecilialeiqi.github.io/job_talk.pdf

Deep Learning Requires Big Labeled Data

 Deep learning succeeds with abundant labeled data.

Emerging Application Domains Lack Data

Emerging Application Domains Lack Data

Labeled data is lacking: significant costs in money and time.

Pre-trained model: any models trained on broad data at scale and can be adapted to a wide range of downstream tasks. Train on broad data at scale Data Text Images Training Speech MM Pretrained Models Structured Data 3D Signals

Pre-trained model: any models trained on broad data at scale and can be adapted to a wide range of downstream tasks.

Pre-trained model: any models trained on broad data at scale and can be adapted to a wide range of downstream tasks.

Pre-trained Model Expands the Capability of AI

Al is undergoing a paradigm shift with pre-trained models.

Examples:

• language models: BERT, GPT-3

SD Times

GPT-3 can now be customized to individual applications

Developers can now fine-tune GPT-3 on their own data, creating a custom version tailored to their application, which allows for faster and...

3 weeks ago

Figure source: Google News.

Al is undergoing a paradigm shift with pre-trained models.

Examples:

- language models: BERT, GPT-3
- code generation: Codex, AlphaCode

W The New Stack

When DeepMind's 'AlphaCode' Competed Against Human ...

This month, DeepMind announced that it has also developed a system named AlphaCode to compete in programming competitions, evaluating its...

4 days ago

Figure source: Google News.

Pre-trained Model Expands the Capability of AI

Al is undergoing a paradigm shift with pre-trained models.

Examples:

- language models: BERT, GPT-3
- code generation: Codex, AlphaCode
- multi-modal pre-trained models: DALL-E, CLIP

vB VentureBeat

OpenAl's text-to-image engine, DALL-E, is a powerful visual idea generator

ÓĊ

DALL-E is a 12-billion parameter version of the 175 billion parameter GPT-3 natural language processing neural network. GPT-3 "learns" based on...

Qi Lei

Jan 16, 2021

Figure source: Google News.

Power of Pre-trained Models

Figure source: Goyal et al. 2021.

7/41

Example: CLIP

Zero shot image classifier

F00D101

guacamole (90.1%) Ranked 1 out of 101 labels

a photo of guacamole, a type of food.

× a photo of **ceviche**, a type of food.

 \times a photo of **edamame**, a type of food.

x a photo of tuna tartare, a type of food.

× a photo of **hummus**, a type of food.

Figure source: OpenAI, https://clip.backprop.co/

8/41

Behind the Scenes

- What training tasks are useful for downstream tasks?
- What algorithm/architecture can identify the useful features?

How many samples are required?

- guide technical decisions
- · reduce trial and error
- forecast outcomes and risks
- inspire new methods

Current learning theory is more mature in supervised learning.

- Big labeled dataset is necessary to fit deep networks.
- Training and testing data follow the same distribution.

Current learning theory is more mature in supervised learning.

- Big labeled dataset is necessary to fit deep networks.
- Training and testing data follow the same distribution.

Our target

We want to understand how pre-trained model can

• adapt to new tasks quickly,

5-shot learning on ImageNet

Current learning theory is more mature in supervised learning.

- Big labeled dataset is necessary to fit deep networks.
- Training and testing data follow the same distribution.

Our target

We want to understand how pre-trained model can

- adapt to new tasks quickly,
- be learned from unlabeled samples,

Current learning theory is more mature in supervised learning.

- Big labeled dataset is necessary to fit deep networks.
- Training and testing data follow the same distribution.

Our target

We want to understand how pre-trained model can

- adapt to new tasks quickly,
- be learned from unlabeled samples,
- handle distributional shift from training to adaptation

1 Meta-learning

- Meta-Learning with Frozen Representation
- Meta-learning with Fine-tuned Representation

2 Self-Supervised Learning

3 Ongoing and Future Work

- Domain Adaptation
- Lifelong Learning
- Meta Reinforcement Learning

Learning the Meta-Representation

Prototypical network: (Snell et al. 2017), Meta-learning representation: (Javed and White, 2019)

Learning the Meta-Representation

12/41

Learning the Meta-Representation

On target task:
$$\hat{w}^{(\mathsf{Target})} \leftarrow \operatorname*{arg\,min}_{w} \mathsf{loss}(w \circ \hat{\phi}).$$

Why does the learned representation transfer to target task?

Why does the learned representation transfer to target task?

- Shared good representation across tasks: There exist predictors w_t , representation function $\phi \in \Phi$, $y_t = (w_t)^{\top} \phi(x) + \text{noise}$ for both source and target tasks.
- Is this enough?

Why does the learned representation transfer to target task?

- Shared good representation across tasks: There exist predictors w_t , representation function $\phi \in \Phi$, $y_t = (w_t)^\top \phi(x) + \text{noise}$ for both source and target tasks.
- Is this enough?

Behind the scenes

• Shared representation encodes what transfers across the tasks.

2 Source tasks $\{w_t^{(\text{Source})}\}$ diverse enough to "cover" $w^{(\text{Target})}$.

Importance of Task Diversity

- Shared representation encodes what transfers across the tasks.
- 2 Diversity of source tasks $\{w_t^{(Source)}\}\$ (at least needs to "cover" the target task.)

Task diversity

Source tasks: Classify types of dogs

Target task: Cat or dog?

Importance of Task Diversity

- Shared representation encodes what transfers across the tasks.
- Diversity of source tasks {w_t^(Source)}
 (at least needs to "cover" the target task.)

Importance of Task Diversity

- Shared representation encodes what transfers across the tasks.
- 2 Diversity of source tasks $\{w_t^{(Source)}\}$ (at least needs to "cover" the target task.)

Mathematically speaking, $w^{(\text{Target})} \in \text{span}\{w_1^{(\text{Source})}, \cdots, w_{n_n}^{(\text{Source})}\}$.

General Low-dimensional Meta Representation

Setup:

- Shared representation: $y_t = w_t^\top \phi(x_t) + \text{noise}$
- Representation layer is of dimension k (We assume k is small)

Theorem 1 (Informal)

We only need O(k) labeled samples from target domain to get small test error.

In contrast, supervised learning requires samples up to the **complexity of the function class**.

E.g., VGG19: 10^3 vs. 10^7 , from Arora et al. 2018.

15/41

Theorem 1

With shared representation and task diversity,

Test Error $(\hat{w}^{(\mathsf{Target})} \circ \hat{\phi})$ \leq Representation Error + Adaptation Error

- ullet Representation error: how well you learn representation layer ϕ
- Adaptation error: how well you learn target predictor $w^{(\mathsf{Target})}$

Theorem 1

With shared representation and task diversity,

 $\begin{array}{l} \text{Test Error}(\hat{w}^{(\mathsf{Target})} \circ \hat{\phi}) \\ \leq & \text{Representation Error} + \mathsf{Adaptation Error} \\ \lesssim & \underbrace{\frac{\mathcal{C}(\Phi)}{n_S n_e}}_{\text{representation error}} + & \underbrace{\frac{k}{n_T}}_{\text{adaptation error}}. \end{array}$

- ullet Representation error: how well you learn representation layer ϕ
- Adaptation error: how well you learn target predictor $w^{(\mathsf{Target})}$

Main Result on Meta Representation

With shared representation and task diversity,

Main Result on Meta Representation

Baselines:

• Supervised learning:

Test error
$$\leq \frac{\mathcal{C}(w \circ \Phi)}{n_T}$$
.

• Maurer et al. 2016:

Test error
$$\leq \frac{\mathcal{C}(\Phi)}{\sqrt{n_e}} + \frac{k}{n_T}.$$

Meta-learning handles distributional shift:

• Covariate shift is allowed.

Source and target data can come from different marginal distribution.

Theorem 1

With shared representation and task diversity,

$$\begin{array}{l} {\rm Test}\; {\rm Error}(\hat{w}^{({\rm Target})}\circ\hat{\phi})\lesssim \underbrace{\frac{{\cal C}(\Phi)}{n_Sn_e}}_{\rm representation\; error} + \underbrace{\frac{k}{n_T}}_{\rm adaptation\; error}. \end{array}$$

Meta-learning handles distributional shift:

• Covariate shift is allowed.

Source and target data can come from different marginal distribution.

Few-shot learning via learning the representation, provably. ICLR 2021

LINK TO APPENDIX

1 Meta-learning

- Meta-Learning with Frozen Representation
- Meta-learning with Fine-tuned Representation

2 Self-Supervised Learning

Ongoing and Future Work

- Domain Adaptation
- Lifelong Learning
- Meta Reinforcement Learning

• Previously:
$$y_t = w_t^{\top} \phi(x) + \text{noise}.$$

- Previously: $y_t = w_t^\top \phi(x) + \text{noise}.$
- Now: $y_t = w_t^{\top} \phi_t(x) + \text{noise}, \phi_t \text{ is } \gamma \text{-close to } \phi.$

• Previously:
$$y_t = w_t^{\top} \phi(x) + \text{noise}.$$

• Now:
$$y_t = w_t^\top \phi_t(x) + \text{noise}, \phi_t \text{ is } \gamma \text{-close to } \phi.$$

Question

Does METAREP (previous algorithm) still work? *If not, how should we modify the algorithm?*

Instantiation in linear setting:

When $\gamma = 0$ (no misspecification), METAREP requires at most O(k) samples on the target task.

Instantiation in linear setting:

When $\gamma = 0$ (no misspecification), METAREP requires at most O(k) samples on the target task.

Theorem: However, when $\gamma > 0$, METAREP requires at least $\Omega(d)$ samples on the target task.

Instantiation in linear setting:

When $\gamma = 0$ (no misspecification), METAREP requires at most O(k) samples on the target task.

Theorem: However, when $\gamma > 0$, METAREP requires at least $\Omega(d)$ samples on the target task.

• No improvement over supervised learning that requires *O*(*d*) samples.

Instantiation in linear setting:

When $\gamma = 0$ (no misspecification), METAREP requires at most O(k) samples on the target task.

Theorem: However, when $\gamma > 0$, METAREP requires at least $\Omega(d)$ samples on the target task.

- No improvement over supervised learning that requires O(d) samples.
- Previous algorithm is extremely fragile!

- **1** Use source tasks to find ϕ as an initialization.
- 2 Fine-tune each representation ϕ_t starting from ϕ that tolerates mis-specification.

Model-agnostic Meta-learning: Finn et al. 2017

- **1** Use source tasks to find ϕ as an initialization.
- 2 Fine-tune each representation ϕ_t starting from ϕ that tolerates mis-specification.

$$\min_{\phi} \min_{\|\phi_t - \phi\| \le \gamma, w_t} \sum_{\mathsf{Task } t} \mathsf{loss}(w_t, \phi_t),$$

Model-agnostic Meta-learning: Finn et al. 2017

- **1** Use source tasks to find ϕ as an initialization.
- **②** Fine-tune each representation ϕ_t starting from ϕ that tolerates mis-specification.

 Φ

$$\min_{\phi} \min_{\|\phi_t - \phi\| \le \gamma, w_t} \sum_{\mathsf{Task } t} \mathsf{loss}(w_t, \phi_t),$$

Model-agnostic Meta-learning: Finn et al. 2017

- **1** Use source tasks to find ϕ as an initialization.
- **②** Fine-tune each representation ϕ_t starting from ϕ that tolerates mis-specification.

Model-agnostic Meta-learning: Finn et al. 2017

- **1** Use source tasks to find ϕ as an initialization.
- **②** Fine-tune each representation ϕ_t starting from ϕ that tolerates mis-specification.

Model-agnostic Meta-learning: Finn et al. 2017

- $\textbf{0} \quad \textbf{Use source tasks to find } \phi \text{ as an initialization.}$
- **②** Fine-tune each representation ϕ_t starting from ϕ that tolerates mis-specification.

Theorem 2 (Informal)

When adapting ϕ to target task, it requires $O(k) + O(\gamma^2)$ training samples from target domain.

Theorem 2

For general function classes, under similar settings,

Test Error
$$\leq METAREP$$
 Error (when $\gamma = 0$) + $O(\frac{\gamma}{\sqrt{n_T}})$.

- γ measures mis-specification in representation ϕ
- n_T : number of samples from target training set

How Fine-Tuning Allows for Effective Meta-Learning, NeurIPS 2021

Theorem 2

For general function classes, under similar settings,

Test Error
$$\leq METAREP$$
 Error (when $\gamma = 0$) + $O(\frac{\gamma}{\sqrt{n_T}})$.

 \bullet We need $O(k)+O(\gamma^2)$ samples from target domain.

Baselines:

- Supervised learning and METAREP need $\mathcal{C}(w \circ \Phi)$ samples from target domain.
- $\mathcal{C}(w \circ \Phi)$: Complexity of the function class for the whole network.

How Fine-Tuning Allows for Effective Meta-Learning, NeurIPS 2021

Meta-learning

- Meta-Learning with Frozen Representation
- Meta-learning with Fine-tuned Representation

2 Self-Supervised Learning

Ongoing and Future Work

- Domain Adaptation
- Lifelong Learning
- Meta Reinforcement Learning

Create your own labels

Supervised representation learning needs labels from related tasks. What if this isn't available?

Create pseudo-labels from the input data.

Self-supervised Learning

Type I: reconstruction-based SSL

Reconstructing part of the input from the other part

Context encoder: (Pathak et al. 2016) Other examples: Masked Autoencoder: (He et al., 2021), Colorization: (Zhang et al., 2016)

Type I: reconstruction-based SSL

Reconstructing part of the input from the other part

BERT: (Devlin et al., 2018)

Other examples: Masked Autoencoder: (He et al., 2021), Colorization: (Zhang et al., 2016)

Self-supervised Learning

Type II: similarity-based SSL

Enforcing two views of the same data to have similar representation

Examples: SimSiam: (Chen et al., 2021), CLIP: (Radford et al., 2021) , SimCLR: (Chen et al., 2020)

Setup

- **1** Label Y with k classes.
- **2** Unmasked image X_1 and masked image X_2 .

Setup

- $\bullet \quad \textbf{Label } Y \text{ with } k \text{ classes.}$
- **2** Unmasked image X_1 and masked image X_2 .

Set Wey intuition: Pretext tasks should help us reduce irrelevant features/forget information that is not necessary to predict Y

Qi Lei

Ideal Scenario

- $\bullet \quad \textbf{Label } Y \text{ with } k \text{ classes.}$
- **2** Unmasked image X_1 and masked image X_2 .

A Thought Experiment

• $X_1 \perp X_2 | Y$

• Image colorization for photos of desert, forest, sea

A Thought Experiment

• $X_1 \perp X_2 | Y$

• Image colorization for photos of desert, forest, sea

• Image inpainting:

Setting:

- k-class labels Y.
- **2** Representation ϕ , last layer W^* .

Compare this procedure to ground truth classifier f^* :

Theorem 3

(No representation error.) If $X_1 \perp X_2 | Y$,

$$f^* = W^* \phi(X_1).$$

2 Only need O(k) labeled samples.

Remark: Only need k samples instead of Rademacher complexity of function class.

Qi Lei

Linear case was studied in Foster, Kakade, Zhang, 2008.

No representation error: if $X_1 \to Y \to X_2$, (i.e., $X_1 \perp X_2 | Y$), then $f^* = W^* \phi(X_1)$.

$$\phi(\cdot) := \mathbb{E}[X_2|X_1] \xrightarrow{\text{tower property}} \mathbb{E}[\mathbb{E}[X_2|X_1,Y]|X_1] \xrightarrow{\text{Cl}} \mathbb{E}[\mathbb{E}[X_2|Y]|X_1]$$
$$= \sum_{y=1}^k \mathbb{E}[X_2|Y=y]P(Y=y|X_1) =: \mathbf{A}^\top f(X_1),$$

Here $f(x_1)_y := P(Y = y | X_1 = x_1), y = 1 \cdots, k$ A satisfies $A_{y,:} = \mathbb{E}[X_2 | Y = y].$

Characterizing Approximate Conditional Independence

Define $\epsilon_{\mathsf{CI}} = \mathbb{E}_{X_1} \|\mathbb{E}[X_2|X_1] - \mathbb{E}_Y[\mathbb{E}[X_2|Y]|X_1]\|^2$.

- This is 0 if $X_1 \perp X_2 \mid Y$.
- ϵ_{CI} can be viewed as quantification of extra shared features between X_1 and X_2 are not captured by Y (spurious feature not reducible by SSL)

Characterizing Approximate Conditional Independence

Define $\epsilon_{CI} = \mathbb{E}_{X_1} \|\mathbb{E}[X_2|X_1] - \mathbb{E}_Y[\mathbb{E}[X_2|Y]|X_1]\|^2$.

- This is 0 if $X_1 \perp X_2 \mid Y$.
- ϵ_{CI} can be viewed as quantification of extra shared features between X_1 and X_2 are not captured by Y (spurious feature not reducible by SSL)

Characterizing Approximate Conditional Independence

Define $\epsilon_{CI} = \mathbb{E}_{X_1} \|\mathbb{E}[X_2|X_1] - \mathbb{E}_Y[\mathbb{E}[X_2|Y]|X_1]\|^2$.

- This is 0 if $X_1 \perp X_2 \mid Y$.
- ϵ_{CI} can be viewed as quantification of extra shared features between X_1 and X_2 are not captured by Y (spurious feature not reducible by SSL)

• ERM would need $n_L \asymp$ Complexity of Function Class.

Characterizing Approximate Conditional Independence

Define $\epsilon_{CI} = \mathbb{E}_{X_1} \|\mathbb{E}[X_2|X_1] - \mathbb{E}_Y[\mathbb{E}[X_2|Y]|X_1]\|^2$.

- This is 0 if $X_1 \perp X_2 \mid Y$.
- ϵ_{CI} can be viewed as quantification of extra shared features between X_1 and X_2 are not captured by Y (spurious feature not reducible by SSL)

- ERM would need $n_L \asymp$ Complexity of Function Class.
- Both terms are tight in $\frac{k}{n_L} + \epsilon_{CI}$ in some scenarios

Characterizing Approximate Conditional Independence

Define $\epsilon_{CI} = \mathbb{E}_{X_1} \|\mathbb{E}[X_2|X_1] - \mathbb{E}_Y[\mathbb{E}[X_2|Y]|X_1]\|^2$.

- This is 0 if $X_1 \perp X_2 \mid Y$.
- ϵ_{CI} can be viewed as quantification of extra shared features between X_1 and X_2 are not captured by Y (spurious feature not reducible by SSL)

- ERM would need $n_L \asymp$ Complexity of Function Class.
- Both terms are tight in $\frac{k}{n_L} + \epsilon_{CI}$ in some scenarios
- Also applies to similarity-based SSL
Empirical Implications

Implications on pretext selection

• Design pretext tasks such that X_1 and X_2 have smaller dependence (given Y)

33/41

Predicting what you already know helps: Provable self-supervised learning, NeurIPS 2021

Empirical Implications

Implications on pretext selection

• Design pretext tasks such that X_1 and X_2 have smaller dependence (given Y)

Applications:

- Image: image classification [He et al. 2021]
- Text: sentiment analysis [Zhang and Hashimoto, 2021]

• Audio: speech recognition [Zaiem et al., 2021]

Predicting what you already know helps: Provable self-supervised learning, NeurIPS 2021

35/41

Outlook

Pre-trained model: Expanding the capability of AI to broader disciplines.

Outlook

Pre-trained model: Expanding the capability of AI to broader disciplines.

I will work towards accelerating us to their "ImageNet" moment.

Remaining challenges:

- Optimization
 - Convergence analysis
 - Training and testing time speed up
- Robustness
 - Handle different types of distribution shift
 - Adversarial robustness (Security issues)
- Applications
 - Reinforcement learning
 - Medical image
- Trustworthy AI
 - Fairness, safety, privacy
 - Interpretability
- Evaluation
 - How to evaluate the model without target data
- Other technical details

Remaining challenges:

Optimization

- Convergence analysis
- Training and testing time speed up
- Robustness
 - Handle different types of distribution shift
 - Adversarial robustness (Security issues)
- Applications
 - Reinforcement learning
 - Medical image
- Trustworthy AI
 - Fairness, safety, privacy
 - Interpretability
- Evaluation
 - How to evaluate the model without target data
- Other technical details

Meta-learning

- Meta-Learning with Frozen Representation
- Meta-learning with Fine-tuned Representation

2 Self-Supervised Learning

3 Ongoing and Future Work

- Domain Adaptation
- Lifelong Learning
- Meta Reinforcement Learning

Future Work

Future Work

We investigate sufficient conditions that guarantee:

- Deep networks learn a good pre-trained model.
- drastically reduce sample complexity.
- be learned on unlabeled data.
- transfer to other tasks/domains with covariate shift.

We investigate sufficient conditions that guarantee:

- Deep networks learn a good pre-trained model.
- drastically reduce sample complexity.
- be learned on unlabeled data.
- transfer to other tasks/domains with covariate shift.

Future Work

Explore the following directions centered at pre-trained models:

- Domain Adaptation/Generalization
- Continual (Lifelong) Learning
- Meta Reinforcement Learning
- Optimization: Traning and Testing Time Speed-ups

Thank you!

Thank you!

Failure with Previous Algorithm: METAREP

$$\mathrm{METAREP}$$
 (Fixed feature) has $\Omega\left(rac{d}{n_T}
ight)$ minimax rate on the target task

METAREP chooses representation based on prediction space norm, not parameter space norm!

Failure with Previous Algorithm: METAREP

METAREP chooses representation based on prediction space norm, not parameter space norm!

Failure with Previous Algorithm: METAREP

Intuition: Trick METAREP into learning subspace of δ_t^* 's, and pay cost of having to fine-tune to learn large-norm $B^* w_{\text{test}}^*$.

Technical Assumptions for Theorem 1

Assumptions:

- I.i.d. Samples
- Input data is light-tail
- Shared representation
- Task diversity

Technical Assumptions for Theorem 1

Assumptions:

- I.i.d. Samples
 - $\left(x,y_{t}\right)$ generated i.i.d from each t-th task
- Input data is light-tail - P_X^t is sub-Gaussian
- Shared representation

-
$$y_t = w_t \circ \phi(x) + \epsilon$$
, noise $\epsilon \sim \mathcal{N}(0,\sigma^2)$

Task diversity

Potential problems:

No shared structure

② Learning objective for meta-learning is not effective

Optimization issues

Potential problems:

- No shared structure
 - No supervised pre-training algorithm will work. Need to switch to self-supervised pre-training.
- 2 Learning objective for meta-learning is not effective

Optimization issues

Potential problems:

No shared structure

- 2 Learning objective for meta-learning is not effective
 - Switch from learning the meta-representation to MAML-like algorithms.
- Optimization issues

Potential problems:

No shared structure

② Learning objective for meta-learning is not effective

- Optimization issues
 - Typical optimization tricks.

Theoretical results:

• If
$$X_1 \perp X_2 | Y$$
,

$$f^* = W^* \phi(X_1).$$

2 Only need k (dimension of Y) samples.

How can $\phi(X_1)$ be better than X_2 to predict Y?

$$Y \in \{-1, 1\}$$

 $X \sim \mathcal{N}(Y[\mu_1, \mu_2], I_{d_1+d_2})$

47/41

$$Y \in \{-1, 1\} \\ X \sim \mathcal{N}(Y[\mu_1, \mu_2], I_{d_1+d_2}) \\ X_1 \sim \mathcal{N}(Y\mu_1, I_{d_1}), \\ X_2 \sim \mathcal{N}(Y\mu_2, I_{d_2}) \\ X_1 \perp X_2 | Y$$

$$\begin{split} & Y \in \{-1, 1\} \\ & X \sim \mathcal{N}(Y[\mu_1, \mu_2], I_{d_1+d_2}) \\ & X_1 \sim \mathcal{N}(Y\mu_1, I_{d_1}), \\ & X_2 \sim \mathcal{N}(Y\mu_2, I_{d_2}) \\ & X_1 \bot X_2 | Y \\ & \mathbb{E}[Y|X_2] \text{ is not linear, but } \\ & \mathbb{E}[Y|\phi] \text{ is linear:} \end{split}$$

47/41

$$\begin{split} &Y \in \{-1,1\} \\ &X \sim \mathcal{N}(Y[\mu_1,\mu_2],I_{d_1+d_2}) \\ &X_1 \sim \mathcal{N}(Y\mu_1,I_{d_1}), \\ &X_2 \sim \mathcal{N}(Y\mu_2,I_{d_2}) \\ &X_1 \bot X_2 | Y \\ &\mathbb{E}[Y|X_2] \text{ is not linear, but} \\ &\mathbb{E}[Y|\phi] \text{ is linear:} \end{split}$$

• $\phi(x_1) = \mathbb{E}[X_2|X_1 = x_1]$ = $p_1(x_1)\mu_2 + p_{-1}(x_1)(-\mu_2)$

•
$$\mathbb{E}[Y|X_1] = p_1(x_1) - p_{-1}(x_1) = \mu_2^\top \phi(X_1) / \|\mu_2\|^2.$$

•
$$p_y(x_1) := P(Y = y | X_1 = x_1)$$

Connection to SimSiam method

- Before, we learn $\phi(x_1) = \mathbb{E}[X_2|X_1 = x_1]$, which naturally requires X_2 and Y to be linearly correlated
- We can actually predict any $g(X_2)|X_1$, or even $p(X_2|X_1)$

ACE and nonlinear CCA

• Alternating conditional expectation (ACE):

$$\begin{split} \min_{\phi,\eta} L_{ACE}(\phi,\eta) &= \mathbb{E}_{X_1,X_2} \left[\|\phi(X_1) - \eta(X_2)\|^2 \right], \\ \text{s.t. } \Sigma_{\phi,\phi} &= \Sigma_{\eta,\eta} = I_k. \end{split}$$

• This is equivalent to the following canonical correlation analysis (CCA):

$$\begin{aligned} \max_{\phi,\eta} L_{CCA}(\phi,\eta) &= \mathbb{E}_{X_1,X_2} \left[\phi(X_1)^\top \eta(X_2) \right], \\ \text{s.t. } \Sigma_{\phi,\phi} &= \Sigma_{n,n} = I_k. \end{aligned}$$

Algorithm (SimSiam):

$$\max_{\phi,\eta,\mathsf{normalized}} \mathbb{E}[\phi(X_1)^\top \eta(X_2)]$$

New measure of conditional independence:

$$\epsilon_{\mathsf{CI}} := \max_{\|g\|_{L^2(X_2)}=1} \mathbb{E}_{X_1}(\mathbb{E}[g(X_2)|X_1] - \mathbb{E}[\mathbb{E}[g(X_2)|Y]|X_1])^2.$$

• Extension of previous result:

test error
$$\leq \epsilon_{CI} + \frac{k}{n_L}$$
.

• If both X_2 and X_1 can well predict Y, i.e., $P_{X_1,Y}(g^*(x_1) \neq y) \leq \alpha$ (same for X_2), we have: $test \ error \leq \frac{\alpha}{1-\epsilon_G} + \frac{k}{n_L}.$

Simulations: Both Terms Tight in $\frac{k}{n_{T}} + \epsilon_{CI}$

Left: Class Conditional Gaussian $X \sim \mathcal{N}(\mu_Y, I), \mu_Y \in \mathbb{R}^{90}, Y \in \{1, 2, \dots k\}, X_1 = X_{1:50}, X_2 = X_{51:90}. X_1 \perp X_2 | Y$

Right: Similar mixture of Gaussian: $X \sim \mathcal{N}(\mu_Y, \Sigma_{\epsilon_{CI}})$, $\alpha \propto \epsilon_{CI}$ controls the dependence of X_1 and X_2 : $\epsilon_{CI} = 0 \Rightarrow$ exact CI, and $\epsilon_{CI} = 1 \Rightarrow X_2$ fully depends on X_1 .
Experiments

• Yearbook: portraits date from 1905 to 2013.

Ongoing Work: Distribution Shift

Entity30 - Passerine

Entity30 - Tableware

BREEDS dataset: (Santurkar et al., 2021)

52/41

Our New Framework: Subpopulation Shift

Components connected through data augmentation

Our New Framework: Subpopulation Shift

Our New Framework: Subpopulation Shift

Method	$A\toW$	$D\toW$	$W\toD$	$A\toD$	$D\toA$	$W\toA$	Average	
MDD	94.97±0.70	98.78±0.07	100±0	92.77±0.72	75.64±1.53	72.82±0.52	89.16	
Ours	95.47±0.95	98.32±0.19	$100{\pm}0$	$93.71{\pm}0.23$	$76.64{\pm}1.91$	74.93±1.15	89.84	
Performance of MDD ¹ and our method on Office-31 dataset.								
Method	$\big \hspace{0.1cm} Ar \to CI$	$Ar\toPr$	$Ar\toRw$	$CI\toAr$	$CI\toPr$	$CI\toRw$	$Pr\toAr$	
MDD	54.9±0.7	74.0±0.3	77.7±0.3	60.6±0.4	70.9±0.7	72.1±0.6	60.7±0.8	
Ours	55.1±0.9	$74.7{\pm}0.8$	$78.7{\pm}0.5$	$63.2{\pm}1.3$	$74.1{\pm}1.8$	$75.3{\pm}0.1$	63.0±0.6	
Method	$\mid Pr \to Cl$	$Pr \to Rw$	$Rw\toAr$	$Rw \to CI$	$Rw\toPr$	Average		
MDD	53.0±1.0	78.0±0.2	71.8±0.4	59.6±0.4	82.9±0.3	68.0		
Ours	53.0±0.6	80.8±0.4	$73.4{\pm}0.1$	$59.4{\pm}0.7$	$84.0{\pm}0.5$	69.6		

Performance of MDD and our method on Office-Home dataset.

A Theory of Label Propagation for Subpopulation Shift, ICML 2021

54/41

¹MDD: (Zhang et al. 2019)

Experiments: Subpopulation Shift Dataset

- ENTITY-30 task from BREEDS tasks.
- We use FixMatch, an existing consistency regularization method. We also leverage SwAV, an existing unsupervised representation learned from ImageNet, where there can be a better structure of subpopulation shift. We compare with popular distribution matching methods like DANN and MDD.

Method	Source Acc	Target Acc
Train on Source	$91.91{\pm}0.23$	$56.73{\pm}0.32$
DANN (Ganin et al., 2016)	$92.81{\pm}0.50$	$61.03{\pm}4.63$
MDD (Zhang et al., 2019)	$92.67 {\pm} 0.54$	$63.95{\pm}0.28$
FixMatch (Sohn et al., 2020)	$90.87{\pm}0.15$	$72.60{\pm}0.51$