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A.l. is Everywhere
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Deep Learning Requires Big Labeled Data

224 x224x3 224 x224x64

VGG16

112 x 112 x 128

56{x 56 x 256
28 x 28 x 512

7x7x512

14 x 14 x 512 1x1x4096 1x 1 x 1000

=) convolution+ReLU
max pooling
fully nected +RelLU
softmax

® Deep learning
succeeds with
abundant labeled data.
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Emerging Application Domains Lack Data
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Emerging Application Domains Lack Data

[ Labeled data is lacking: significant costs in money and time. ]
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Pre-trained model: any models trained on broad data at scale
and can be adapted to a wide range of downstream tasks.

Train on broad data at scale
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Pre-trained model: any models trained on broad data at scale
and can be adapted to a wide range of downstream tasks.
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Pre-trained model: any models trained on broad data at scale
and can be adapted to a wide range of downstream tasks.
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Pre-trained Model Expands the Capability of Al

Al is undergoing a paradigm shift with pre-trained models. ]

Examples:

o language models: BERT, GPT-3
[ sD Times
GPT-3 can now be customized to individual applications

Developers can now fine-tune GPT-3 on their own data, creating a

custom version tailored to their application, which allows for faster
and...

3 weeks ago

Figure source: Google News.
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Pre-trained Model Expands the Capability of Al

Al is undergoing a paradigm shift with pre-trained models.

Examples:

@ language models: BERT, GPT-3
@ code generation: Codex, AlphaCode

w The New Stack

When DeepMind's 'AlphaCode’ Competed Against Human ...
This month, DeepMind announced that it has also developed a
system named AlphaCode to compete in programming competitions,
evaluating its...

4 days ago

Figure source: Google News.
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Pre-trained Model Expands the Capability of Al

Al is undergoing a paradigm shift with pre-trained models.

Examples:

o language models: BERT, GPT-3

@ code generation: Codex, AlphaCode

@ multi-modal pre-trained models: DALL-E, CLIP
vB VentureBeat

OpenAl’s text-to-image engine, DALL-E, is a powerful visual y J K
idea generator

DALL-E is a 12-billion parameter version of the 175 billion parameter
GPT-3 natural language processing neural network. GPT-3 “learns”
based on...

Jan 16, 2021

Figure source: Google News.
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Power of Pre-trained Models

841 Pretrained
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Figure source: Goyal et al. 2021.
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Example: CLIP

Zero shot image classifier
FOOD101

guacamole (20.1%) Ranked 1out of 107 labels

v a photo of guacamole, a type of

food.
X ceviche
X edamame
X tuna tartare
X hummus

Figure source: OpenAl, https://clip.backprop.co/
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Behind the Scenes

Theory's Role on
Training r-----------. Adaptation Pre-trained models?

o What training tasks are useful for |
downstream tasks? ¢ guide technical decisions

» What algorithm/architecture can 2L L NG

identify the useful features? « forecast outcomes and risks

‘s How many samples are required?, « inspire new methods
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Challenge

Current learning theory is more mature in supervised learning.
o Big labeled dataset is necessary to fit deep networks.

@ Training and testing data follow the same distribution.
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Challenge

Current learning theory is more mature in supervised learning.
o Big labeled dataset is necessary to fit deep networks.
@ Training and testing data follow the same distribution.

Our target
We want to understand how pre-trained model can

@ adapt to new tasks quickly,

E
» e
m
“goldfish” e '
“shark” ) TN |42 e~
v, = ‘ T e

5-shot learning on ImageNet J
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Challenge

Current learning theory is more mature in supervised learning.
o Big labeled dataset is necessary to fit deep networks.

@ Training and testing data follow the same distribution.

Our target

We want to understand how pre-trained model can
@ adapt to new tasks quickly,

@ be learned from unlabeled samples,
A quick [MASK] fox jumps over the [MASK] dog

v

A quick brown fox jumps over the lazy dog
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Challenge

Current learning theory is more mature in supervised learning.
o Big labeled dataset is necessary to fit deep networks.

@ Training and testing data follow the same distribution.

Our target

We want to understand how pre-trained model can
@ adapt to new tasks quickly,
@ be learned from unlabeled samples,

@ handle distributional shift from training to adaptation

Autonomous driving
Trained on sunny weather Tested on rainy weather

Qi Lei
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@ Meta-learning
@ Meta-Learning with Frozen Representation
@ Meta-learning with Fine-tuned Representation

© Self-Supervised Learning

© Ongoing and Future Work
@ Domain Adaptation
o Lifelong Learning
@ Meta Reinforcement Learning
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Learning the Meta-Representation

TRAIN ADAPTATION
Cat or Bird Flower or Bike Dog or Otter
[z 5\ N
,,”'/// X w(Target) ‘ 7
wgs"““e) predictor  predictor wgs"““e) predictor
¢ representation é representation

CMEW % wE ¢ PPIRS
A E o SHeE

Prototypical network: (Snell et al. 2017), Meta-learning representation:
(Javed and White, 2019)
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Learning the Meta-Representation

—

TRAIN ADAPTATION
Cat or Bird Flower or Bike Dog or Otter
n N
/ w(Target) T
wgs‘““““) predictor  predictor wgs"““e) predictor
¢ representation é representation

OME W &l ¢
PR Y

On source tasks: ¢ < arg min

ped

Qi Lei

S

P
Eneies

{niluin loss(w; o gb)} .

2.

source tasks ¢

Theoretical Foundations of Pre-trained Models



Learning the Meta-Representation

TRAIN ADAPTATION
Cat or Bird Flower or Bike Dog or Otter
[ 5 N
// w(Target)
gs‘)““e) predictor predictor wgs‘)“”e) predictor
U </ ‘ ‘
) representation é representation

\; A “‘ < ‘ ‘

GMEW Xl PPEE

Bl oM S

~ (Target)

On target task: w < arg min loss(w o ¢).

w
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How to Quantify Task Similarities?

[ Why does the learned representation transfer to target task? ]
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How to Quantify Task Similarities?

[ Why does the learned representation transfer to target task? ]

@ Shared good representation across tasks:
There exist predictors w;, representation function ¢ € P,
y; = (wy) " ¢(x)+noise for both source and target tasks.

@ Is this enough?
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How to Quantify Task Similarities?

[ Why does the learned representation transfer to target task? ]

@ Shared good representation across tasks:
There exist predictors w;, representation function ¢ € P,
y; = (wy) " ¢(x)+noise for both source and target tasks.

@ Is this enough?

Behind the scenes

@ Shared representation encodes what transfers across the tasks.

@ Source tasks {wﬁsource)} diverse enough to “cover’ w(Tareet).
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Importance of Task Diversity

@ Shared representation encodes what transfers across the tasks.

@ Diversity of source tasks {wt(source)}

(at least needs to “cover” the target task.)

Task diversity

Source tasks:
Classify types of dogs

Target task:
Cat or dog?
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Importance of Task Diversity

@ Shared representation encodes what transfers across the tasks.

@ Diversity of source tasks {wisource)}
(at least needs to “cover” the target task.)

ear

shape
— b | eye
color

coat not identifiable from
— e color the source tasks
Y Y nose 4/,]
_j!L color
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Importance of Task Diversity

@ Shared representation encodes what transfers across the tasks.

@ Diversity of source tasks {wgsource)}
(at least needs to “cover” the target task.)

ear
shape

— = eye
color

coat
L ’ color

not identifiable from
the source tasks

Ay nose j
R 4

color

) Ne

Mathematically speaking, w(T2reet) Espan{wgsource) ‘--w(source)}.
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General Low-dimensional Meta Representation

Setup:
@ Shared representation:
yr = wy ¢(x;)+noise
@ Representation layer is of

dimension k (We assume k is
small)

Theorem 1 (Informal)

We only need O(k) labeled samples from target domain to get
small test error.

In contrast, supervised learning requires samples up to the
complexity of the function class.

E.g., VGG19: 10% vs. 107, from Arora et al. 2018.
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Main Result on Meta Representation

With shared representation and task diversity,

Test Error(w(T28%) o )

<Representation Error + Adaptation Error

@ Representation error: how well you learn representation layer ¢

o Adaptation error: how well you learn target predictor w!(Tareet)

Qi Lei Theoretical Foundations of Pre-trained Models



Main Result on Meta Representation

With shared representation and task diversity,

Test Error(w(T28%) o )
<Representation Error + Adaptation Error
C(P k
c@ .k
ngMNe nr
—— —~—

representation error  adaptation error

S

@ Representation error: how well you learn representation layer ¢

o Adaptation error: how well you learn target predictor w!(Tareet)
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Main Result on Meta Representation

With shared representation and task diversity,

% (0]
Test Error(zZ)(Target) 0¢) < C(®) I k.
URUT nr
N—~— ~—

representation error  adaptation error

Input C(®): complexity of the Representation  k: complexity of
| representation function class Layer the last layer
v <7777\ 7, Output
o o). |
T2 f 1
c R*|! LY
Tp i :
¢ € ®:learned by ng samples Wy : learned by
from n. source tasks nr target samples
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Main Result on Meta Representation

With shared representation and task diversity,

2 P k

Test Error(1(T28%) o ) < (@) + —
nSNe nr
~— ~—

representation error  adaptation error

Baselines:

@ Supervised learning:

Test error < M.
nr
@ Maurer et al. 2016:
C(®d k
Test error < (7> + —

Ve np
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Main Result on Meta Representation

With shared representation and task diversity,

R C(® k

Test Error(w(T28t) o @) < (®) + —
nsMe nr
~— ~—

representation error  adaptation error

Meta-learning handles distributional shift:

@ Covariate shift is allowed.
Source and target data can come from different marginal
distribution.
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Main Result on Meta Representation

With shared representation and task diversity,

3 i)
Test Error(zZ)(Target) 0¢) < C(®) n k
URUT nr
N—~— ~—

representation error  adaptation error

Meta-learning handles distributional shift:

o Covariate shift is allowed.
Source and target data can come from different marginal
distribution.

Few-shot learning via learning the representation, provably. ICLR 2021
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@ Meta-learning

@ Meta-learning with Fine-tuned Representation

Theoretical Foundations of Pre-trained Models



No Shared Representation?

What if there is misspecification in the representation?
(Namely, the representation is only approximately shared.)
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No Shared Representation?

What if there is misspecification in the representation?
(Namely, the representation is only approximately shared.)

o Previously: y; = w, é(z)+noise.
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No Shared Representation?

What if there is misspecification in the representation?
(Namely, the representation is only approximately shared.)

o Previously: y; = w, é(z)+noise.

o Now: y; = w/ ¢¢(x) + noise, ¢; is y-close to ¢.
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No Shared Representation?

What if there is misspecification in the representation?
(Namely, the representation is only approximately shared.)

o Previously: y; = w, é(z)+noise.

o Now: y; = w, ¢¢(x) + noise, ¢; is y-close to ¢.

Does METAREP (previous algorithm) still work?
If not, how should we modify the algorithm?
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Failure with Previous Algorithm: METAREP

Instantiation in linear setting:

Input « Representation
layer
linear ¢
Y
k-dim
d-dim

When = 0 (no misspecification), METAREP requires at
most O (k) samples on the target task.
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Failure with Previous Algorithm: METAREP

Instantiation in linear setting:

When = 0 (no misspecification), METAREP requires at
most O (k) samples on the target task.

Theorem: However, when v > 0, METAREP requires at
least €2 (d) samples on the target task.
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Failure with Previous Algorithm: METAREP

Instantiation in linear setting:

When = 0 (no misspecification), METAREP requires at
most O (k) samples on the target task.

Theorem: However, when v > 0, METAREP requires at
least €2 (d) samples on the target task.

@ No improvement over supervised learning that requires O(d)
samples.
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Failure with Previous Algorithm: METAREP

Instantiation in linear setting:

When = 0 (no misspecification), METAREP requires at
most O (k) samples on the target task.

Theorem: However, when v > 0, METAREP requires at
least €2 (d) samples on the target task.

@ No improvement over supervised learning that requires O(d)
samples.

@ Previous algorithm is extremely fragile!

Qi Lei Theoretical Foundations of Pre-trained Models



Modified Algorithm: FINE-TUNEDREP

@ Use source tasks to find ¢ as an initialization.

@ Fine-tune each representation ¢; starting from ¢ that
tolerates mis-specification.

Model-agnostic Meta-learning: Finn et al. 2017
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Modified Algorithm: FINE-TUNEDREP

@ Use source tasks to find ¢ as an initialization.

@ Fine-tune each representation ¢; starting from ¢ that
tolerates mis-specification.

min  min E loss(wy, ¢r),
—¢||<
¢ |lpe—oll<v,we Tack ¢

Model-agnostic Meta-learning: Finn et al. 2017
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Modified Algorithm: FINE-TUNEDREP

@ Use source tasks to find ¢ as an initialization.

@ Fine-tune each representation ¢; starting from ¢ that
tolerates mis-specification.

¢

min  min E loss(wy, ¢r),
—¢||<
¢ |lpe—oll<v,we Tack ¢

Model-agnostic Meta-learning: Finn et al. 2017
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Modified Algorithm: FINE-TUNEDREP

@ Use source tasks to find ¢ as an initialization.

@ Fine-tune each representation ¢; starting from ¢ that
tolerates mis-specification.

~ -
¢ -
-

min  min E loss(ws, ¢) o .
¢ llge—ell<ywe L= T .
ask ¢

Model-agnostic Meta-learning: Finn et al. 2017
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Modified Algorithm: FINE-TUNEDREP

@ Use source tasks to find ¢ as an initialization.

@ Fine-tune each representation ¢; starting from ¢ that
tolerates mis-specification.

) Tl
-~
N
AY
1
’
’
'
”
min  min E loss(wy, ¢¢), ¢";"’""‘¢>t
b — || <~v.w
¢ llge (')H*"“lTaskt ¢,1‘ K

Model-agnostic Meta-learning: Finn et al. 2017
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Modified Algorithm: FINE-TUNEDREP

@ Use source tasks to find ¢ as an initialization.

@ Fine-tune each representation ¢; starting from ¢ that
tolerates mis-specification.

¢ -
-

min  min Z loss(ws, ¢t), ¢ Ty

by — | <~w £
¢ lloe—oll<vwe 57 1

Theorem 2 (Informal)

When adapting ¢ to target task, it requires O(k) + O(+?) training
samples from target domain.
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Main Result on Fine-tuned Representation

For general function classes, under similar settings,

L)

Test Error < METAREP Error (when v = 0) + O( .
~Y /nT

@ 7y measures mis-specification in representation ¢

@ n7: number of samples from target training set

How Fine-Tuning Allows for Effective Meta-Learning, NeurlPS 2021
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Main Result on Fine-tuned Representation

For general function classes, under similar settings,

L)_

Test Error S METAREP Error (when v = 0) + O(
nr

o We need O(k) + O(v?%) samples from target domain.
Baselines:

@ Supervised learning and METAREP need C(w o ®) samples
from target domain.

o C(w o ®@): Complexity of the function class for the whole
network.

How Fine-Tuning Allows for Effective Meta-Learning, NeurlPS 2021
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© Self-Supervised Learning
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No labeled data?

Create your own labels

Supervised representation learning needs labels from related tasks.
What if this isn't available?

Create pseudo-labels from the input data.
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Self-supervised Learning

Type |: reconstruction-based SSL

Reconstructing part of the input from the other part

pretext task:
Xo ~ ¢(X1)

downstream
task:
Y ~ W(X1)

representation

layer

Context encoder: (Pathak et al. 2016)
Other examples: Masked Autoencoder: (He et al., 2021), Colorization:
(Zhang et al., 2016)
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Self-supervised Learning

Type |: reconstruction-based SSL

Reconstructing part of the input from the other part

A quick [MASK] fox jumps over the [MASK] dog

A quick brown fox jumps over the lazy dog

BERT: (Devlin et al., 2018)
Other examples: Masked Autoencoder: (He et al., 2021), Colorization:
(Zhang et al., 2016)
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Self-supervised Learning

Type II: similarity-based SSL

Enforcing two views of the same data to have similar representation

Maximize agreement

¢(—f(1) #(X2)

Representation ¢

T
e

N
= 2R :s
X2

" bua

m augmentation2
i~

Data
augmentation1

Examples: SimSiam: (Chen et al., 2021), CLIP: (Radford et al., 2021) ,
SimCLR: (Chen et al., 2020)
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@ Label Y with & classes.
@ Unmasked image X7 and masked image Xs.

pretext task:

X2 ~ ¢(X1)
LN v downstream
> o task:
Y ~ We(X1)

representation
layer
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@ Label Y with k classes.
@ Unmasked image X7 and masked image Xs.

pretext task:
X2 ~ ¢(X1)

(., downstream
’ i task:
) Y = We(X1)
representation
layer

© Key intuition: Pretext tasks should help us reduce irrelevant
features/forget information that is not necessary to predict Y
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Ideal Scenario

@ Label Y with k classes.
@ Unmasked image X7 and masked image Xs.

pretext task:
X2 ~ ¢(X1)

downstream
task:
Y ~ Wo(X1)

representation
layer

© ldeal scenario: X7 —Y — X5
< XlLX2|Y
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A Thought Experiment

o X; L XolY
@ Image colorization for photos of desert, forest, sea
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A Thought Experiment

o X1 L X,V

@ Image colorization for photos of desert, forest, sea

@ Image inpainting:
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Our Result: Ideal Scenario

Setting:
© k-class labels Y.
@ Representation ¢, last layer W*.
Compare this procedure to ground truth classifier f*:

© (No representation error.) If X7 1 Xo|Y,

[T =Wo(Xy).

@ Only need O(k) labeled samples.

Remark: Only need k& samples instead of Rademacher complexity
of function class.

Linear case was studied in Foster, Kakade, Zhang, 2008.
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Proof sketch

No representation error: if X1 — Y — X, (i.e., X1 LX5|Y),
then f* = W*¢(X)).

@)

tower property |
o) =E[Xa|X1] = E[E[Xa|X1, Y] X)] = E[E[X2|Y]|X)]
k
=SBy = ylP(Y = y|x)) = AT (X)),
y=1

Here f(z1)y :=P(Y =y| X1 =21),y=1--- .k
A satisfies A, . = E[X»]Y = y].
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Main Results on Reconstruction-based SSL

X, X2

Characterizing Approximate Conditional Independence
Deﬁne €C| — EXl ”E[XQ‘Xl] — EY[E[XQ‘Y”Xl]HZ
@ Thisis0if X; 1 Xy |Y.
@ €y can be viewed as quantification of extra shared features

between X; and X5 are not captured by Y (spurious feature
not reducible by SSL)
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Main Results on Reconstruction-based SSL

Characterizing Approximate Conditional Independence

Define ec; = Ex, ||E[X2|X1] — Ey [E[X2|Y]|X1]|%.
@ Thisis0if X;1X,|Y.
@ €y can be viewed as quantification of extra shared features

between X7 and X are not captured by Y (spurious feature
not reducible by SSL)

k
Test Error < — + €q
ny, ~—
~~ representation error

adaptation error
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Main Results on Reconstruction-based SSL

Characterizing Approximate Conditional Independence

Define ec; = Ex, ||E[X2|X1] — Ey [E[X2|Y]|X1]|%.
@ Thisis0if X;1X,|Y.
@ €y can be viewed as quantification of extra shared features

between X7 and X are not captured by Y (spurious feature
not reducible by SSL)

k
Test Error < — + €q
ny, ~—
~~ representation error

adaptation error

@ ERM would need n; =< Complexity of Function Class.
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Main Results on Reconstruction-based SSL

Characterizing Approximate Conditional Independence

Define ec; = Ex, ||E[X2|X1] — Ey [E[X2|Y]|X1]|%.
@ Thisis0if X;1X,|Y.
@ €y can be viewed as quantification of extra shared features

between X7 and X are not captured by Y (spurious feature
not reducible by SSL)

k
Test Error < — + €q
ny, ~—
~~ representation error

adaptation error

@ ERM would need n; =< Complexity of Function Class.

@ Both terms are tight in % + €c) in some scenarios
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Main Results on Reconstruction-based SSL

Characterizing Approximate Conditional Independence

Define ec; = Ex, ||E[X2|X1] — Ey [E[X2|Y]|X1]|%.
@ Thisis0if X;1X,|Y.
@ €y can be viewed as quantification of extra shared features

between X7 and X are not captured by Y (spurious feature
not reducible by SSL)

k
Test Error < — + €q
ny, ~—
~~ representation error

adaptation error

@ ERM would need n; =< Complexity of Function Class.
@ Both terms are tight in % + €c) in some scenarios

@ Also applies to similarity-based SSL
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Empirical Implications

Implications on pretext selection

@ Design pretext tasks such that X; and X5 have smaller
dependence (given Y)

Predicting what you already know helps: Provable self-supervised learning,
NeurlPS 2021
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Empirical Implications

Implications on pretext selection

@ Design pretext tasks such that X; and X5 have smaller
dependence (given Y)

Applications:
e Image: image classification [He et al. 2021]

o Text: sentiment analysis [Zhang and Hashimoto, 2021]

;' sentlment -dependent mask generic mask
| [mask] thls movie | I|ke th|s [mask]j
like movie ‘v:

o Audio: speech recognition [Zaiem et al., 2021]

Predicting what you already know helps: Provable self-supervised learning,
NeurlPS 2021
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Overview of My Research Contributions

Adversarial

Robustness L
. Optimization
Machine

Learning

Generalization
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Overview of My Research Contributions

Adversarial

Robustness Convex Mlin-lma_x Matr\xfTeljsor Distributed
. Optimization Optimization Analysis Training
Machine
— Neural Network
Supervised O Training
Pretraining

Meta-Learning O
Semi-supervised
Learning O

Domain adaptation O
/Generalization

Self-supervised
Learning O

Unsupervised
Learning O
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Overview of My Research Contributions

Adversarial
Robustness Convex Min-max Matrix/Tensor Distributed
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Overview of My Research Contributions
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Y

2] =l
( ‘r ofi' ALL in Healthcare

Pre-trained model:
Expanding the capability of Al to
broader disciplines.
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Outlook

Pre-trained model:
Expanding the capability of Al to
broader disciplines.

I will work towards accelerating us to
their “ImageNet” moment.
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Remaining challenges:

@ Optimization

o Convergence analysis

e Training and testing time speed up
@ Robustness

e Handle different types of distribution shift
o Adversarial robustness (Security issues)

Applications
o Reinforcement learning
o Medical image
Trustworthy Al

o Fairness, safety, privacy
o Interpretability

e Evaluation
e How to evaluate the model without target data

Other technical details
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Remaining challenges:

@ Optimization

o Convergence analysis

e Training and testing time speed up
@ Robustness

e Handle different types of distribution shift
o Adversarial robustness (Security issues)

Applications

o Reinforcement learning
e Medical image

Trustworthy Al

o Fairness, safety, privacy
o Interpretability

e Evaluation
e How to evaluate the model without target data

Other technical details
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© Ongoing and Future Work
@ Domain Adaptation
o Lifelong Learning
@ Meta Reinforcement Learning
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Summary and Future Work

We investigate sufficient conditions that guarantee:
Deep networks learn a good pre-trained model.
drastically reduce sample complexity.

be learned on unlabeled data.

transfer to other tasks/domains with covariate shift.
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Summary and Future Work

We investigate sufficient conditions that guarantee:
@ Deep networks learn a good pre-trained model.
@ drastically reduce sample complexity.
@ be learned on unlabeled data.
e transfer to other tasks/domains with covariate shift.

[ Future Work ]

Explore the following directions centered at pre-trained models:
e Domain Adaptation/Generalization
e Continual (Lifelong) Learning
@ Meta Reinforcement Learning
@ Optimization: Traning and Testing Time Speed-ups
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Thank you!

Qi Lei Theoretical Foundations of Pre-t



Thank you!

Link back to:
Back-up slides:
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Failure with Previous Algorithm: METAREP

d
METAREP (Fixed feature) has 2 ) minimax rate on
nr
the target task
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Failure with Previous Algorithm: METAREP

METAREP chooses representation based on prediction
space norm, not parameter space norm/!

Parameter space (Lg-norm)

* *
Afwy

B*wy
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Failure with Previous Algorithm: METAREP

METAREP chooses representation based on prediction
space norm, not parameter space norm/!

Parameter space (Lg-norm) Prediction space (X-norm)
Ajwy
Afwy

B*wyf B*wy
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Failure with Previous Algorithm: METAREP

METAREP chooses representation based on prediction
space norm, not parameter space norm!

Parameter space (La-norm) Prediction space (X-norm)

Ajwy

%k
Ajw;

B*wyf Brwy

Intuition: Trick METAREP into learning subspace of ¢;'s, and pay
cost of having to fine-tune to learn large-norm B*wj .
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Technical Assumptions for Theorem 1

Assumptions:

@ l.i.d. Samples
@ Input data is light-tail

@ Shared representation

o Task diversity
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Technical Assumptions for Theorem 1

Assumptions:

@ l.i.d. Samples
- (x,y:) generated i.i.d from each t-th task

@ Input data is light-tail

- P% is sub-Gaussian
@ Shared representation

-y = wy 0 ¢(x) + €, noise € ~ N(0,02)
o Task diversity

target source
Q w™t espan{w;i°'¢}
Q@ W = [wi*ree, - - - w;?"] is well-conditioned
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Empirical Implication

Theory helps to diagnose the failure issue and determine the
solution.

Potential problems:

@ No shared structure

@ Learning objective for meta-learning is not effective

© Optimization issues
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Empirical Implication

Theory helps to diagnose the failure issue and determine the
solution.

Potential problems:

© No shared structure
- No supervised pre-training algorithm will work. Need to

switch to self-supervised pre-training.

@ Learning objective for meta-learning is not effective

© Optimization issues
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Empirical Implication

Theory helps to diagnose the failure issue and determine the
solution.

Potential problems:
@ No shared structure

@ Learning objective for meta-learning is not effective
- Switch from learning the meta-representation to MAML-like
algorithms.

© Optimization issues
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Empirical Implication

Theory helps to diagnose the failure issue and determine the
solution.

Potential problems:

@ No shared structure

@ Learning objective for meta-learning is not effective

© Optimization issues
- Typical optimization tricks.
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General Functions

Theoretical results:
0 If X; L XolY,

ff=W(Xy).
@ Only need k (dimension of Y') samples.

How can ¢(X;) be better than X5 to predict Y7?
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Example: Gaussian Mixture

Y e{-1,1}
ol X|Y: 1 X NN(Y[Ml,MQ],Id1+d2)
— =
/'./..- \.\\.\\
N
X|Y = -1
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Example: Gaussian Mixture

. Y € {_17 1}
X, eR X ~ N(Y[p1, p2]; Lay +d,)
X1 NN(Yﬂlaqu)’
XY =1 Xo ~ N (Y o, Iz,)
X1 1 Xo|Y
, e Xy €RY
,/0//.'. \.\‘\
\\\.\ . ///
XYy =-1
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Example: Gaussian Mixture

Y S {_1> 1}
X ~ N(Y g1, p2, La,+ds)

X, e R®:
Xl NN(Y;UJhIch)?

Xg NN(Yuz,I)
Xy ~ N(Ypia, lay)
M2y Xly=1 XlJ_X2|Y
' E[Y|X5] is not linear, but
_;E“ | M ; X, € R E[Y|¢] is linear:

|
\\:\ .////

Xy =-1
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Example: Gaussian Mixture

X[y =1

X; €eR%

X, € Rdz
Xy ~ N (Y, I)
! P
| H
i ~
e TN D
e
\\:\ ////
Xy =-1

Y e{-1,1}
X ~ N(Y[Ml,,UQ]’Idl—i-dQ)
X1 NN(YM17[d1)>
_X2 NN(YMQ,IdZ)
X11Xo|Y
E[Y|X5] is not linear, but
E[Y|¢] is linear:
() d)(ml) = E[X2|X1 = l‘l]
= p1(@1)p2 + p_1(z1)(—pe)
) E[Y‘Xl] = pl(:cl) -
p-1(x1) = pg ¢(X1)/ |2
o py(x1) =P =y|X; =
l’l)
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Connection to SimSiam method

o Before, we learn ¢(z1) = E[X32|X; = x1], which naturally
requires Xo and Y to be linearly correlated

e We can actually predict any g(X3)| X1, or even p(X3|X7)

ACE and nonlinear CCA
@ Alternating conditional expectation (ACE):

minLaci(6,1) = Ex, x, |[16(X2) = n(X) |
s.t. E¢7¢ = 277777 = 1.

@ This is equivalent to the following canonical correlation
analysis (CCA):

rrdl)e}?choA(qb, n) =Ex, x, [¢>(X1)TTI(X2) ;

s.t. 2¢7¢> = 277777 = 1.
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Similarity-based SSL

Algorithm (SimSiam):

max  E[p(X1) n(Xo)]

¢,n,normalized

New measure of conditional independence:

eci=  max Ex,(Elg(Xs)|X1] — E[E[g(Xs)[Y]|X1])%

||9‘|L2(x2):1
@ Extension of previous result:

test error < ecy+ %

o If both X5 and X; can well predict Y, i.e.,
Px, vy (9*(z1) # y) < a (same for X3), we have:

< _« k.
test error S = + -
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Simulations: Both Terms Tight in % + €c

w* and non-linear function class w" and non-linear function class

- "
0.0006 ] w(X1) 0.0004 ‘)”(( 1
X1 !
0.0003
%0.0004- w
2 = 0.0002
0.0002 1 0.0001
. 0.0000
0.0000 02 03 04 05
> 4 6 8 €cr
k

Left: Class Conditional Gaussian X ~ N (uy, 1), uy € RY €
{1, 2, ce k‘},Xl = X1:50,X2 = X51;90. XlJ_X2|Y
Right: Similar mixture of Gaussian: X ~ N (uy,Xc,), @ X e
controls the dependence of X7 and X5: e¢cj = 0 = exact Cl,
and ec; = 1 = X fully depends on X;.

Qi Lei Theoretical Foundations of Pre-trained Models



Experiments

19+
—— Xz (linear)

18 4 X1 (linear)
5 171 —— X (linear)
.E m— Y(X;) (linear)
% 161 —— X1 (resnetl8)
3 ‘/\/\
2
2 151
c
i 14 4
=

13

12

500 1000 1500 2000 2500 3000
Number of labeled data

@ Yearbook: portraits date from 1905 to 2013.
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Ongoing Work: Distribution Shift

Source Target Target

Entity30 - Passerine Entity30 - Tableware

BREEDS dataset: (Santurkar et al., 2021)
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Our New Framework: Subpopulation Shift

subgroup 1 of
class 1

=~ QO

P -~ -
A \
Target| ¢, | ! )
\ \
- - L=
‘
\
N
. -~
subgroup 2
“. ofclass 1
9
Components connected Selv

through data augmentation
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Our New Framework: Subpopulation Shift

subgroup 1 of class 1:
black and white warbler

wel QO

¢~ o~ -
\ \
Target | ! ol 1
X - \ - g
i
\
.
.
Se -
subgroup 2
~
+ of class 1
1
A 1
Components connected b 4

through data augmentation
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Our New Framework: Subpopulation Shift

Flip
Random Crop

Class 1 | Class -1

= QO

Target

Components connected
through data augmentation

Data
Augmentation

subgroup 1 of class 1:
black and white warbler

subgroup 2
4 “. ofclass 1
9
e
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Method‘ A—->W D—-W W — D A—D D—A W — A Average

MDD | 94.974+0.70 98.784+0.07 100+0 92.77+£0.72 75.64+1.53 72.82+0.52  89.16
Ours | 95.47+0.95 98.324+0.19 100+0 93.71+0.23 76.64+1.91 74.93+1.15 89.84

Performance of MDD and our method on Office-31 dataset.

Method ‘ Ar—Cl Ar—Pr Ar->Rw Cl—Ar C —Pr Cl—Rw Pr— Ar
MDD ‘ 54.9+0.7 74.0+£0.3 77.7£0.3 60.6+0.4 70.9+0.7 72.1+0.6 60.7£0.8

Ours | 55.1+09 74.7+0.8 78.7+05 63.2+1.3 74.1+1.8 75.3+0.1 63.04+0.6
Method ‘ Pr—Cl Pr—-Rw Rw—Ar Rw— Cl Rw — Pr Average

MDD | 53.0+1.0 78.0+0.2 71.8+0.4 59.6+0.4 82.9+0.3 68.0
Ours | 53.0+0.6 80.8+0.4 73.4+£0.1 59.44+0.7 84.0+0.5 69.6

Performance of MDD and our method on Office-Home dataset.

'MDD: (Zhang et al. 2019)
A Theory of Label Propagation for Subpopulation Shift, ICML 2021
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Experiments: Subpopulation Shift Dataset

¢ ENTITY-30 task from BREEDS tasks.

* We use FixMatch, an existing consistency regularization method. We also
leverage SwAV, an existing unsupervised representation learned from
ImageNet, where there can be a better structure of subpopulation shift. We
compare with popular distribution matching methods like DANN and MDD.

Method Source Acc  Target Acc

Train on Source 91.914+0.23 56.73+0.32
DANN (Ganin et al., 2016)  92.81+0.50 61.03+4.63
MDD (Zhang et al., 2019)  92.67+0.54 63.954+0.28
FixMatch (Sohn et al., 2020) 90.874+0.15 72.60+0.51
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