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Deep Learning Requires Big Labeled Data
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Emerging Application Domains Lack Data

Labeled data is lacking: significant costs in money and time.
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Pre-trained model: any models trained on broad data at scale
and can be adapted to a wide range of downstream tasks.
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Pre-trained Model Expands the Capability of AI

AI is undergoing a paradigm shift with pre-trained models.

Examples:

language models: BERT, GPT-3

code generation: Codex, AlphaCode

multi-modal pre-trained models: DALL-E, CLIP

Figure source: Google News.
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Power of Pre-trained Models

Figure source: Goyal et al. 2021.
Qi Lei Theoretical Foundations of Pre-trained Models



8/41

Example: CLIP

Zero shot image classifier

Figure source: OpenAI, https://clip.backprop.co/
Qi Lei Theoretical Foundations of Pre-trained Models
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Behind the Scenes
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Challenge

Current learning theory is more mature in supervised learning.

Big labeled dataset is necessary to fit deep networks.

Training and testing data follow the same distribution.
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Outline

1 Meta-learning
Meta-Learning with Frozen Representation
Meta-learning with Fine-tuned Representation

2 Self-Supervised Learning

3 Ongoing and Future Work
Domain Adaptation
Lifelong Learning
Meta Reinforcement Learning
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Learning the Meta-Representation

Prototypical network: (Snell et al. 2017), Meta-learning representation:
(Javed and White, 2019)
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Learning the Meta-Representation

On source tasks: ϕ̂← argmin
ϕ∈Φ

∑
source tasks t

{
min
wt

loss(wt ◦ ϕ)
}
.
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Learning the Meta-Representation

On target task: ŵ(Target) ← argmin
w

loss(w ◦ ϕ̂).
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How to Quantify Task Similarities?

Why does the learned representation transfer to target task?

1 Shared good representation across tasks:
There exist predictors wt, representation function ϕ ∈ Φ,
yt = (wt)

⊤ϕ(x)+noise for both source and target tasks.

2 Is this enough?

Behind the scenes

1 Shared representation encodes what transfers across the tasks.

2 Source tasks {w(Source)
t } diverse enough to “cover” w(Target).

Qi Lei Theoretical Foundations of Pre-trained Models



13/41

How to Quantify Task Similarities?

Why does the learned representation transfer to target task?

1 Shared good representation across tasks:
There exist predictors wt, representation function ϕ ∈ Φ,
yt = (wt)

⊤ϕ(x)+noise for both source and target tasks.

2 Is this enough?

Behind the scenes

1 Shared representation encodes what transfers across the tasks.

2 Source tasks {w(Source)
t } diverse enough to “cover” w(Target).

Qi Lei Theoretical Foundations of Pre-trained Models



13/41

How to Quantify Task Similarities?

Why does the learned representation transfer to target task?

1 Shared good representation across tasks:
There exist predictors wt, representation function ϕ ∈ Φ,
yt = (wt)

⊤ϕ(x)+noise for both source and target tasks.

2 Is this enough?

Behind the scenes

1 Shared representation encodes what transfers across the tasks.

2 Source tasks {w(Source)
t } diverse enough to “cover” w(Target).

Qi Lei Theoretical Foundations of Pre-trained Models



14/41

Importance of Task Diversity

1 Shared representation encodes what transfers across the tasks.

2 Diversity of source tasks {w(Source)
t }

(at least needs to “cover” the target task.)
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Importance of Task Diversity

1 Shared representation encodes what transfers across the tasks.

2 Diversity of source tasks {w(Source)
t }

(at least needs to “cover” the target task.)

Mathematically speaking, w(Target) ∈span{w(Source)
1 , · · ·w(Source)

ne }.
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General Low-dimensional Meta Representation

Setup:

Shared representation:
yt = w⊤

t ϕ(xt)+noise

Representation layer is of
dimension k (We assume k is
small)

Theorem 1 (Informal)

We only need O(k) labeled samples from target domain to get
small test error.

In contrast, supervised learning requires samples up to the
complexity of the function class.

E.g., VGG19: 103 vs. 107, from Arora et al. 2018.
Qi Lei Theoretical Foundations of Pre-trained Models
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Main Result on Meta Representation

Theorem 1

With shared representation and task diversity,

Test Error(ŵ(Target) ◦ ϕ̂)
≤Representation Error+ Adaptation Error

≲
C(Φ)
nSne︸ ︷︷ ︸

representation error

+
k

nT︸︷︷︸
adaptation error

.

Representation error: how well you learn representation layer ϕ

Adaptation error: how well you learn target predictor w(Target)
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nSne︸ ︷︷ ︸

representation error

+
k

nT︸︷︷︸
adaptation error

.

Baselines:

Supervised learning:

Test error ≤ C(w ◦ Φ)
nT

.

Maurer et al. 2016:

Test error ≤ C(Φ)√
ne

+
k

nT
.
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Main Result on Meta Representation

Theorem 1

With shared representation and task diversity,

Test Error(ŵ(Target) ◦ ϕ̂) ≲ C(Φ)
nSne︸ ︷︷ ︸

representation error

+
k

nT︸︷︷︸
adaptation error

.

Meta-learning handles distributional shift:

Covariate shift is allowed.
Source and target data can come from different marginal
distribution.

Few-shot learning via learning the representation, provably. ICLR 2021
Link to appendix
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Outline

1 Meta-learning
Meta-Learning with Frozen Representation
Meta-learning with Fine-tuned Representation

2 Self-Supervised Learning

3 Ongoing and Future Work
Domain Adaptation
Lifelong Learning
Meta Reinforcement Learning
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No Shared Representation?

What if there is misspecification in the representation?
(Namely, the representation is only approximately shared.)

Previously: yt = w⊤
t ϕ(x)+noise.

Now: yt = w⊤
t ϕt(x) + noise, ϕt is γ-close to ϕ.

Question

Does MetaRep (previous algorithm) still work?
If not, how should we modify the algorithm?
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Failure with Previous Algorithm: MetaRep

Instantiation in linear setting:

When γ = 0 (no misspecification), MetaRep requires at
most O (k) samples on the target task.

Theorem: However, when γ > 0, MetaRep requires at
least Ω (d) samples on the target task.

No improvement over supervised learning that requires O(d)
samples.
Previous algorithm is extremely fragile!

Qi Lei Theoretical Foundations of Pre-trained Models



20/41

Failure with Previous Algorithm: MetaRep

Instantiation in linear setting:

When γ = 0 (no misspecification), MetaRep requires at
most O (k) samples on the target task.

Theorem: However, when γ > 0, MetaRep requires at
least Ω (d) samples on the target task.

No improvement over supervised learning that requires O(d)
samples.

Previous algorithm is extremely fragile!

Qi Lei Theoretical Foundations of Pre-trained Models



20/41

Failure with Previous Algorithm: MetaRep

Instantiation in linear setting:

When γ = 0 (no misspecification), MetaRep requires at
most O (k) samples on the target task.

Theorem: However, when γ > 0, MetaRep requires at
least Ω (d) samples on the target task.

No improvement over supervised learning that requires O(d)
samples.

Previous algorithm is extremely fragile!

Qi Lei Theoretical Foundations of Pre-trained Models



20/41

Failure with Previous Algorithm: MetaRep

Instantiation in linear setting:

When γ = 0 (no misspecification), MetaRep requires at
most O (k) samples on the target task.

Theorem: However, when γ > 0, MetaRep requires at
least Ω (d) samples on the target task.

No improvement over supervised learning that requires O(d)
samples.

Previous algorithm is extremely fragile!

Qi Lei Theoretical Foundations of Pre-trained Models



21/41

Modified Algorithm: Fine-tunedRep

1 Use source tasks to find ϕ as an initialization.

2 Fine-tune each representation ϕt starting from ϕ that
tolerates mis-specification.

min
ϕ

min
∥ϕt−ϕ∥≤γ,wt

∑
Task t

loss(wt, ϕt),

Model-agnostic Meta-learning: Finn et al. 2017
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Modified Algorithm: Fine-tunedRep

1 Use source tasks to find ϕ as an initialization.

2 Fine-tune each representation ϕt starting from ϕ that
tolerates mis-specification.

min
ϕ

min
∥ϕt−ϕ∥≤γ,wt

∑
Task t

loss(wt, ϕt),

Theorem 2 (Informal)

When adapting ϕ to target task, it requires O(k) +O(γ2) training
samples from target domain.

Qi Lei Theoretical Foundations of Pre-trained Models
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Main Result on Fine-tuned Representation

Theorem 2

For general function classes, under similar settings,

Test Error ≲ MetaRep Error (when γ = 0)+O(
γ
√
nT

).

γ measures mis-specification in representation ϕ

nT : number of samples from target training set

How Fine-Tuning Allows for Effective Meta-Learning, NeurIPS 2021
Link to appendix
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Main Result on Fine-tuned Representation

Theorem 2

For general function classes, under similar settings,

Test Error ≲ MetaRep Error (when γ = 0)+O(
γ
√
nT

).

We need O(k) +O(γ2) samples from target domain.

Baselines:

Supervised learning and MetaRep need C(w ◦ Φ) samples
from target domain.

C(w ◦ Φ): Complexity of the function class for the whole
network.

How Fine-Tuning Allows for Effective Meta-Learning, NeurIPS 2021
Link to appendix
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Outline

1 Meta-learning
Meta-Learning with Frozen Representation
Meta-learning with Fine-tuned Representation

2 Self-Supervised Learning

3 Ongoing and Future Work
Domain Adaptation
Lifelong Learning
Meta Reinforcement Learning

Qi Lei Theoretical Foundations of Pre-trained Models



24/41

No labeled data?

Create your own labels

Supervised representation learning needs labels from related tasks.
What if this isn’t available?

Create pseudo-labels from the input data.

Qi Lei Theoretical Foundations of Pre-trained Models
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Self-supervised Learning

Type I: reconstruction-based SSL

Reconstructing part of the input from the other part

Context encoder: (Pathak et al. 2016)
Other examples: Masked Autoencoder: (He et al., 2021), Colorization:

(Zhang et al., 2016)
Qi Lei Theoretical Foundations of Pre-trained Models



25/41

Self-supervised Learning

Type I: reconstruction-based SSL

Reconstructing part of the input from the other part

BERT: (Devlin et al., 2018)
Other examples: Masked Autoencoder: (He et al., 2021), Colorization:

(Zhang et al., 2016)
Qi Lei Theoretical Foundations of Pre-trained Models
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Self-supervised Learning

Type II: similarity-based SSL

Enforcing two views of the same data to have similar representation

Examples: SimSiam: (Chen et al., 2021), CLIP: (Radford et al., 2021) ,
SimCLR: (Chen et al., 2020)

Qi Lei Theoretical Foundations of Pre-trained Models
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Setup

1 Label Y with k classes.

2 Unmasked image X1 and masked image X2.

3
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Setup

1 Label Y with k classes.

2 Unmasked image X1 and masked image X2.

3 Key intuition: Pretext tasks should help us reduce irrelevant
features/forget information that is not necessary to predict Y
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Ideal Scenario

1 Label Y with k classes.

2 Unmasked image X1 and masked image X2.

3 Ideal scenario: X1 → Y → X2

⇐⇒ X1⊥X2|Y

Qi Lei Theoretical Foundations of Pre-trained Models
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A Thought Experiment

X1 ⊥ X2|Y
Image colorization for photos of desert, forest, sea

Image inpainting:
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Our Result: Ideal Scenario

Setting:

1 k-class labels Y .

2 Representation ϕ, last layer W ∗.

Compare this procedure to ground truth classifier f∗:

Theorem 3

1 (No representation error.) If X1 ⊥ X2|Y ,

f∗ = W ∗ϕ(X1).

2 Only need O(k) labeled samples.

Remark: Only need k samples instead of Rademacher complexity
of function class.

Linear case was studied in Foster, Kakade, Zhang, 2008.
Qi Lei Theoretical Foundations of Pre-trained Models
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Proof sketch

No representation error: if X1 → Y → X2, (i.e.,X1⊥X2|Y ),
then f∗ = W ∗ϕ(X1).

ϕ(·) := E[X2|X1]

tower property︷︸︸︷
= E[E[X2|X1, Y ]|X1]

CI︷︸︸︷
= E[E[X2|Y ]|X1]

=

k∑
y=1

E[X2|Y = y]P (Y = y|X1) =: A⊤f(X1),

Here f(x1)y := P (Y = y|X1 = x1), y = 1 · · · , k
A satisfies Ay,: = E[X2|Y = y].

Qi Lei Theoretical Foundations of Pre-trained Models
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Main Results on Reconstruction-based SSL

Characterizing Approximate Conditional Independence

Define ϵCI = EX1 ∥E[X2|X1]− EY [E[X2|Y ]|X1]∥2.
This is 0 if X1⊥X2 | Y .

ϵCI can be viewed as quantification of extra shared features
between X1 and X2 are not captured by Y (spurious feature
not reducible by SSL)

Test Error ≲
k

nL︸︷︷︸
adaptation error

+ ϵCI︸︷︷︸
representation error

ERM would need nL ≍ Complexity of Function Class.
Both terms are tight in k

nL
+ ϵCI in some scenarios

Also applies to similarity-based SSL
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Empirical Implications

Implications on pretext selection

Design pretext tasks such that X1 and X2 have smaller
dependence (given Y )

Applications:

Image: image classification [He et al. 2021]

Text: sentiment analysis [Zhang and Hashimoto, 2021]

Audio: speech recognition [Zaiem et al., 2021]

Predicting what you already know helps: Provable self-supervised learning,
NeurIPS 2021
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Overview of My Research Contributions
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Outlook

Pre-trained model:
Expanding the capability of AI to
broader disciplines.

I will work towards accelerating us to
their “ImageNet” moment.
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Remaining challenges:

Optimization

Convergence analysis
Training and testing time speed up

Robustness

Handle different types of distribution shift
Adversarial robustness (Security issues)

Applications

Reinforcement learning
Medical image

Trustworthy AI

Fairness, safety, privacy
Interpretability

Evaluation

How to evaluate the model without target data

Other technical details
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Outline

1 Meta-learning
Meta-Learning with Frozen Representation
Meta-learning with Fine-tuned Representation

2 Self-Supervised Learning

3 Ongoing and Future Work
Domain Adaptation
Lifelong Learning
Meta Reinforcement Learning
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Summary and Future Work

We investigate sufficient conditions that guarantee:

Deep networks learn a good pre-trained model.

drastically reduce sample complexity.

be learned on unlabeled data.

transfer to other tasks/domains with covariate shift.

Future Work

Explore the following directions centered at pre-trained models:

Domain Adaptation/Generalization

Continual (Lifelong) Learning

Meta Reinforcement Learning

Optimization: Traning and Testing Time Speed-ups
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Thank you!
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Thank you!

Link back to: MetaRep FinetunedRep SSL

Back-up slides: FinetunedRep SSL Example Experiments
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Failure with Previous Algorithm: MetaRep

MetaRep (Fixed feature) has Ω

(
d

nT

)
minimax rate on

the target task

Parameter space (L2-norm) Prediction space (Σ-norm)
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MetaRep chooses representation based on prediction
space norm, not parameter space norm!
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Prediction space (Σ-norm)
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Failure with Previous Algorithm: MetaRep

MetaRep chooses representation based on prediction
space norm, not parameter space norm!

Parameter space (L2-norm) Prediction space (Σ-norm)

Intuition: Trick MetaRep into learning subspace of δ∗t ’s, and pay
cost of having to fine-tune to learn large-norm B∗w∗

test.
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Technical Assumptions for Theorem 1

Assumptions:

I.i.d. Samples

- (x, yt) generated i.i.d from each t-th task

Input data is light-tail

- P t
X is sub-Gaussian

Shared representation

- yt = wt ◦ ϕ(x) + ϵ, noise ϵ ∼ N (0, σ2)

Task diversity

1 wtarget ∈span{wsource
t }

2 W = [wsource
1 , · · ·wsource

ne
] is well-conditioned

Back
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Empirical Implication

Theory helps to diagnose the failure issue and determine the
solution.

Potential problems:

1 No shared structure

- No supervised pre-training algorithm will work. Need to
switch to self-supervised pre-training.

2 Learning objective for meta-learning is not effective

- Switch from learning the meta-representation to MAML-like
algorithms.

3 Optimization issues

- Typical optimization tricks.

Back

Qi Lei Theoretical Foundations of Pre-trained Models



45/41

Empirical Implication

Theory helps to diagnose the failure issue and determine the
solution.

Potential problems:

1 No shared structure
- No supervised pre-training algorithm will work. Need to
switch to self-supervised pre-training.

2 Learning objective for meta-learning is not effective

- Switch from learning the meta-representation to MAML-like
algorithms.

3 Optimization issues

- Typical optimization tricks.

Back

Qi Lei Theoretical Foundations of Pre-trained Models



45/41

Empirical Implication

Theory helps to diagnose the failure issue and determine the
solution.

Potential problems:

1 No shared structure

- No supervised pre-training algorithm will work. Need to
switch to self-supervised pre-training.

2 Learning objective for meta-learning is not effective
- Switch from learning the meta-representation to MAML-like
algorithms.

3 Optimization issues

- Typical optimization tricks.

Back

Qi Lei Theoretical Foundations of Pre-trained Models



45/41

Empirical Implication

Theory helps to diagnose the failure issue and determine the
solution.

Potential problems:

1 No shared structure

- No supervised pre-training algorithm will work. Need to
switch to self-supervised pre-training.

2 Learning objective for meta-learning is not effective

- Switch from learning the meta-representation to MAML-like
algorithms.

3 Optimization issues
- Typical optimization tricks.

Back

Qi Lei Theoretical Foundations of Pre-trained Models



46/41

General Functions

Theoretical results:

1 If X1 ⊥ X2|Y ,
f∗ = W ∗ϕ(X1).

2 Only need k (dimension of Y ) samples.

How can ϕ(X1) be better than X2 to predict Y ?
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Example: Gaussian Mixture

Y ∈ {−1, 1}
X ∼ N (Y [µ1, µ2], Id1+d2)

ϕ(x1) = E[X2|X1 = x1]
= p1(x1)µ2 + p−1(x1)(−µ2)

E[Y |X1] = p1(x1)−
p−1(x1) = µ⊤

2 ϕ(X1)/∥µ2∥2.
py(x1) := P (Y = y|X1 =
x1)
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Connection to SimSiam method

Before, we learn ϕ(x1) = E[X2|X1 = x1], which naturally
requires X2 and Y to be linearly correlated

We can actually predict any g(X2)|X1, or even p(X2|X1)

ACE and nonlinear CCA

Alternating conditional expectation (ACE):

min
ϕ,η

LACE(ϕ, η) = EX1,X2

[
∥ϕ(X1)− η(X2)∥2

]
,

s.t. Σϕ,ϕ = Ση,η = Ik.

This is equivalent to the following canonical correlation
analysis (CCA):

max
ϕ,η

LCCA(ϕ, η) = EX1,X2

[
ϕ(X1)

⊤η(X2)
]
,

s.t. Σϕ,ϕ = Ση,η = Ik.
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Similarity-based SSL

Algorithm (SimSiam):

max
ϕ,η,normalized

E[ϕ(X1)
⊤η(X2)]

New measure of conditional independence:

ϵCI := max
∥g∥L2(X2)

=1
EX1(E[g(X2)|X1]− E[E[g(X2)|Y ]|X1])

2.

Extension of previous result:

test error ≲ ϵCI +
k
nL

.

If both X2 and X1 can well predict Y , i.e.,
PX1,Y (g

∗(x1) ̸= y) ≤ α (same for X2), we have:

test error ≲ α
1−ϵCI

+ k
nL

.
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Simulations: Both Terms Tight in k
nL

+ ϵCI

Left: Class Conditional Gaussian X ∼ N (µY , I), µY ∈ R90, Y ∈
{1, 2, · · · k}, X1 = X1:50, X2 = X51:90. X1⊥X2|Y

Right: Similar mixture of Gaussian: X ∼ N (µY ,ΣϵCI), α ∝ ϵCI
controls the dependence of X1 and X2: ϵCI = 0⇒ exact CI,
and ϵCI = 1⇒ X2 fully depends on X1.
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Experiments

Yearbook: portraits date from 1905 to 2013.
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Ongoing Work: Distribution Shift

BREEDS dataset: (Santurkar et al., 2021)
Qi Lei Theoretical Foundations of Pre-trained Models
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Our New Framework: Subpopulation Shift
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Our New Framework: Subpopulation Shift
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Experiments

Method A → W D → W W → D A → D D → A W → A Average

MDD 94.97±0.70 98.78±0.07 100±0 92.77±0.72 75.64±1.53 72.82±0.52 89.16
Ours 95.47±0.95 98.32±0.19 100±0 93.71±0.23 76.64±1.91 74.93±1.15 89.84

Performance of MDD1 and our method on Office-31 dataset.

Method Ar → Cl Ar → Pr Ar → Rw Cl → Ar Cl → Pr Cl → Rw Pr → Ar

MDD 54.9±0.7 74.0±0.3 77.7±0.3 60.6±0.4 70.9±0.7 72.1±0.6 60.7±0.8
Ours 55.1±0.9 74.7±0.8 78.7±0.5 63.2±1.3 74.1±1.8 75.3±0.1 63.0±0.6

Method Pr → Cl Pr → Rw Rw → Ar Rw → Cl Rw → Pr Average

MDD 53.0±1.0 78.0±0.2 71.8±0.4 59.6±0.4 82.9±0.3 68.0
Ours 53.0±0.6 80.8±0.4 73.4±0.1 59.4±0.7 84.0±0.5 69.6

Performance of MDD and our method on Office-Home dataset.

1MDD: (Zhang et al. 2019)
A Theory of Label Propagation for Subpopulation Shift, ICML 2021
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Experiments: Subpopulation Shift Dataset
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