
Modern Topics on Statistical Learning Theory 2023 Spring

Lecture 9 — Domain Adaptation

Prof. Qi Lei Scribe: Ying Wang, Akash Gupta, Yunlei Lu

1 Introduction

In this lecture, we will focus on concepts and methodologies for domain adaptation. Domain
adaptation is a field in machine learning where the model is trained on the source dataset and then
applied to the target dataset different from the source dataset.

From the notations in the previous lecture, let DS = {(xSi , ySi)
nS
i=1} denote the source dataset, where

(xSi , y
S
i) are drawn from the distribution PS

X,Y . The model is trained where the goal is to minimize

the loss on the source dataset, i.e., find θ∗ such that the model outputs fθ(x
S
i) minimizes the loss

θ∗ = argmin
θ

1

nS

nS∑
i=1

l(fθ(x
S
i), y

S
i). (1)

The question is that whether the trained model performs well on the target dataset, i.e., the loss
LT (θ) on the target dataset DT is small, where

LT (θ) = E(xT ,yT)∼PT
X,Y

[
l(fθ(x

S
i), y

S
i)

]
. (2)

Based on the information of the target dataset DT , we have the following different types of domain
adaptation:

• Unsupervised domain adaptation: The target dataset is unlabeled, DT = {(xTi)
nT
i=1}.

• Semi-supervised domain adaptation: The target dataset contains both unlabeled data and a
limited set of labeled data, DT = {(xTi)

nT
i=1} ∪ {(x̃i, ỹi)ñT

i=1}.

• Supervised domain adaptation: All data in the target dataset is labeled.

• Domain/OOD Generalization: No data from the target domain. Learn distributional-robust
model (no adaption anymore) when we have multiple source tasks.

This is in contrast to traditional supervised learning, where the data in the source and target dataset
are sampled from the same distribution, i.e., PS = PT .

2 Domain Adaptation

Domain adaptation refers to the problem of adapting a predictive model learned from one domain
to make accurate predictions on a different, but related, domain. Let’s assume we have a source

1

domain Ds and a target domain Dt with corresponding input spaces Xs and Xt and output spaces
Ys and Yt. We have a labeled training set Ds = (xi, yi)

ns
i=1 from the source domain and an unlabeled

test set Dt = (xj)
nt

j=1 from the target domain. The goal is to learn a predictor f : Xt → Yt that
performs well on the target domain.

One approach to domain adaptation is to use a regularized objective function that encourages the
model to learn features that are invariant to changes in the input distribution. A popular example
is the Maximum Mean Discrepancy (MMD) regularizer:

minf
1

nt

nt∑
j=1

l(f(xj), yj) + λMMD(pt, ps)

where ℓ is a loss function, λ is a regularization parameter, ps and pt are the probability distributions
of the source and target domains respectively, and MMD(pt, ps) is the maximum mean discrepancy
between the two distributions. We define other such examples in Section 4.

Another approach to domain adaptation is transfer learning, which involves leveraging knowledge
learned from a source domain to improve performance on a target domain. One popular technique
is to use pre-trained models, such as convolutional neural networks (CNNs), to extract features
from the input data and fine-tune them on the target domain. This can be done by adding new
layers to the pre-trained model and training them on the target domain.

Below we define the problem of domain adaptation more formally,

Goal: from DS +DT : learn a fθ s.t. E l(fθ(x), y) is small.

Note that the problem is ill-defined/impossible when no assumption connecting PS and P T .

Setting 1: covariance shift PS
Y |X = P T

Y |X , but PS
X ̸= P T

x

Setting 2: model/concept shift PS
Y |X ̸= P T

Y |X but they are ”close” (Example: minθ∈Θ EPS l(fθ(x), y)+

EPT (fθ(x), y) =: λ∗
Θ is small, or essentially PT (y|x) ≈ PS(y|x)∀x, y

Setting 3: label shift PS
Y ̸= P T

Y (or PS
Y |X ̸= P T

Y |X) but PS
X|Y = P T

X|Y

3 Domain generalization

Another parallel problem similar to domain adaptation or DA is domain generalization.

Domain generalization is a related problem to domain adaptation, but with the goal of learning
a model that can generalize to new, unseen domains. Let’s assume we have k different domains,
D1,D2, . . . ,Dk, each with its own input space Xi and output space Yi. We have labeled training sets
Di = (xi,j , yi,j)

ni

j=1 from each domain, and we want to learn a predictor f : X → Y that performs
well on all domains.

One approach to domain generalization is to use a regularized objective function that encourages
the model to learn features that are invariant to changes in the input distribution across domains.
One example is the Group Distribution Discrepancy (GDD) regularizer:

minf
1

k

k∑
i=1

1

nt

nt∑
j=1

l(f(xi,j), yj) + λ GDD({pi}ki=1)

2

where ℓ is a loss function, λ is a regularization parameter, pi is the probability distribution of the
ith domain, and GDD({pi}ki=1) is the group distribution discrepancy between the k domains.

Another approach to domain generalization is to use a model that can learn shared representations
across domains, such as deep neural networks. One popular technique is to use a Siamese network
architecture, which consists of two or more identical subnetworks that share weights. The input data
from each domain is passed through its own subnetwork, and the outputs are then concatenated
and passed through a final output layer.

To evaluate the performance of a domain generalization model, we can use the notion of the
generalization error, which measures the expected loss of the model on new, unseen data from the
same domain as the training data. We can define the generalization error as:

GenError(f) = E(x,y) p(x,y)[l(f(x)), y]

where p(x, y) is the joint distribution of the input-output pairs.

To analyze the generalization error of a model, we can use techniques such as the Rademacher
complexity and the VC dimension. The Rademacher complexity measures the ability of the model
to fit random noise in the data, while the VC dimension measures the complexity of the model class
and its ability to fit different functions.

4 Related Work

• [Ben-David 2006] [1]

LT (θ) : E
(x,y)∼PT

l(fθ(x), y) ≤ LS(θ) + d(P T
X,Y , P

S
X,Y) + λ∗

Θ (3)

• [Kifer et al. 2004] [3] or [Redko et al. 2017] [4]: W1 distance

We can further replace x with h(x) ⇒ PS
h(X),Y ≈ P T

h(X),Y .

Potentially, one can reduce the distance of d

(
PT
h(X),Y ,P

S
h(X),Y

)
, i.e., find an invariant representation.

min
fθ:=w◦h

LS(fθ) + λd(P T
h(X), P

T
h(X)) (4)

• [Ganin & Lempitsky] [2].

Make the distribution of h(x), x ∼ PS
X , and h(x), x ∼ P T

X to be indistinguishable. We hope the best
classifier performs badly on the domain classification task, (h(xi)

S , 1)&(h(xj)
T , 0).

min
w,h

LS(fθ(fθ)− λL(optimal domain classifier on h(x)) (5)

If PS(h(x)) ≈ PT (h(x)), the best model will be similar to random guess.

3

MMD-based distance (maximum mean discrepancy) h(X) =: X̃.

dMMD(P
S
X̃
, P T

X̃
) = || 1

nS

nS∑
i=1

ϕ(x̃i
S)− 1

nS

nT∑
i=1

ϕ(x̃i
T)|| (6)

Example: ϕ(x̃i) = x̃ix̃i
T

• [Tzeng etal 2014] [5].
min
w,h

LS(w ◦ h) + λd2MMD(h(X
T), h(XS)) (7)

Wasserstein distance (Kantorovich duality)

minw,hLS(w ◦ h) + λW1(P
S
h(x), P

T
h(x))

where W1(P
S
h(x), P

T
h(x)) = maxED:1−lipXS∼PS

X
[D(h(xS))]− EXT∼PT

X
[D(h(xT))]

• [Zhu etal 2017] [6]: Cycle GAN

LGAN,S→T (X
S , XT , GS→T , D

T) = E
XT

[logDT (X)] + E
XS

[log(1−DT (GS→T (X
S))]

LGAN,T→S(X
S , XT , GT→S , D

S) = E
XS

[logDS(X)] + E
XT

[log(1−DS(GT→S(X
T))]

Lcycle(X
S , XT , GS→T , GT→S) = E(||GT→S(GS→T (X

S))−XS ||) + E(||GS→T (GT→S(X
T))−XT ||)

Then, the objective is

min
fθ

LS(fθ) + λ(LGAN,S→T + LGAN,T→S + Lcycle)

and the prediction is
fθ(GT→S(X

T))

Note that
LT (w ◦ h) ≤ LS(θ) + d(h(XS), h(XT)) + λ∗

Θ

where λ∗
Θ = argminw LS(w ◦ h) + LT (w ◦ h). Previous methods minimize the first two terms, by

choosing h, but they potentially make the λ∗ explode. For example, h is a good classifier on the
source: h : X → [0, 1] and w is an identity function, not necessarily making sure h is still expressive
enough.

4

References

[1] Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. Analysis of representations
for domain adaptation. Advances in neural information processing systems, 19, 2006.

[2] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural
networks. The journal of machine learning research, 17(1):2096–2030, 2016.

[3] Daniel Kifer, Shai Ben-David, and Johannes Gehrke. Detecting change in data streams. In
VLDB, volume 4, pages 180–191. Toronto, Canada, 2004.

[4] Ievgen Redko, Amaury Habrard, and Marc Sebban. Theoretical analysis of domain adaptation
with optimal transport. In Machine Learning and Knowledge Discovery in Databases: European
Conference, ECML PKDD 2017, Skopje, Macedonia, September 18–22, 2017, Proceedings, Part
II 10, pages 737–753. Springer, 2017.

[5] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. Deep domain
confusion: Maximizing for domain invariance. arXiv preprint arXiv:1412.3474, 2014.

[6] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image
translation using cycle-consistent adversarial networks. In Proceedings of the IEEE international
conference on computer vision, pages 2223–2232, 2017.

5

