
Modern Topics on Statistical Learning Theory Spring 2023

Lecture 8 — Meta Learning

Prof. Qi Lei Scribe: Lehan Li, Kristi Topollai, Qiwen Zhang

1 Meta learning and few shot learning

1.1 Overview

Now we enter the second half of the lecture.

”Modern topics” of statistical learning theory
↓

unit 1
↓

unit 2 and unit 3
↓

Descriptions of settings (how to apply statistical learning theory)

• For unit 1, we primarily focus on statistical learning theory.

• For unit 2 and 3, we focus on modern topics, to apply statistical learning theory from unit 1.

Today’s Objective meta-learning (learning to learn) / few-shot learning

previous dataset D =

{
train shared training and testing

test we need lots of samples
(1)

• Previously, the dataset contained training and testing data, where the data had the same
distribution, marginal distribution of the input, and label classes.

• We need lots of samples to fully train the model.

• In reality, human learning process is not the same as above.

1.2 Motivating Examples

We are presented with paintings from two different people (Alice and Bob). And each of them have
3 paintings (3-shots). Thus the training samples are limited for this scenario. Then another new

1



Figure 1: Caption

painting is presented and the task is to recognize if the painting is done by Alice or Bob.

The new painting −→ obviously belongs to Bob

From this motivating examples, the key takeaways are

• People use prior knowledge in performing a new task instead of learning from scratch.

• Similarly, can we use prior information to train Machine Learning models faster
and more sample efficiently? (goal of meta and few-shot learning)

• Train a model on different (but relevant) learning tasks such that it could help solve new tasks
with only a few samples.

1.3 Few-shot Classification Problem

One application of meta-learning is the few-shot classification problem. Where the objective is to
learn a model to recognize unseen targets during training with limited labeled examples.

2



• Input

{
Ds

1, D
s
2, ..., D

s
e source

DT target, which is the new task for the model

To look inside each D:

Ds
i = {x

(i)
j , y

(i)
j }

ns

j=1

DT = {xTj , yTj }
nt

j=1

Where we denote by e the number of different tasks. ns refers to the samples for each
source task, nt refers to the samples for target task. And nt is much smaller than ns.

• L-way Classification: yi ∈ [L] = {1, 2, ..., L}
It means that in each of the individual tasks in the training data set, there are L different
categories in the yi label

• K-shot Learning: k samples per class in each task

• Motivating example: for the example above, it should be a 2-way 3-shot classification problem.

One question regarding to Few-shot Classification Problem is that how to use structures learned
from Ds

i , i = 1, ..., e to adopt to new task (sample) efficiently?

The solution is to learn a meta parameter θ, such that

fi = A(Ds
i , θ)

is good for Ds
i where fi refers to task specific model parameters, A(·, ·) refers to the ’base learner’.

Figure 2: Few shot classification tasks

1.4 Training procedure on some tasks

Training

θ̂ = argmin
θ

e∑
i=1

L̂(Ds
i , fi) such that fi = A(Ds

i , θ)

3



The function minimizes the sum of training losses for each task using the task specific parameters,
the task specific parameters are obtained from a meta parameter θ which is shared across all tasks.

Testing

fT = A(DT , θ̂)

The base learner uses trained θ̂ and the test task data set DT to obtain the test task parameters fT

1.5 Model Agnostic Meta Learning [4]

Perhaps the most popular meta learning algorithm is Model Agnostic Meta Learning (cit)

• The general idea behind MAML is to find a model initialization θ̂, so that, for a new task, a
small number of gradient steps and a small amount of training data are sufficient to produce
good generalization performance on that task.

• The function A(·, ·) is a gradient based method, and it is basically finetuning the learned θ.
In MAML, it consists of a few gradient descent steps, usually 5 to 10.

• MAML training involves two levels of gradient descent. The outer loop trains the model with
respect to the shared parameter θ, and the inner loop trains the model with task specific
parameters fi.

In particular, assuming only one gradient step of adaptation, then if θ is the meta solution/initialization
and p(T ) is a distribution over tasks, the training procedure is formulated as follows

θ′i = θ − α∇θLTi (fθ)

min
θ

∑
Ti∼p(T )

LTi
(
fθ′i

)
=

∑
Ti∼p(T )

LTi
(
fθ−α∇θLTi (fθ)

)

Figure 3: MAML

4



2 Finding a shared representation

Another approach to meta-learning is to find a good shared representation [1]), for example, the
prototypical network [5]. An illustration of the network can be referred to figure 4:

Figure 4

where ϕθ represents the shared weight matrix that’s shared in all tasks 1 . . . e and ht is task-specific.

In this example, only 4 hidden layers are present but theoretically there could be arbitrarily many.
In practice, ϕθ can be either fixed or fine-tuned. Fixing the ϕθ means that when applying the
learned ϕθ to a new task, only ht is learned. Fine-tuning means that both ϕθ and ht are updated
when applying the network on a new task.

Optimization

• From source datasets, the shared weights are derived by:

ϕ̂← min
ϕ

min
h1,...,ht

e∑
t=1

L̂St (ht ◦ ϕ)

where
L̂St (ht ◦ ϕ) =

∑
(x,y)∼DS

t

l(ht(ϕ(x)), y)

In this optimization task, ϕ are the shared parameters, h1, . . . , ht are the weights in the last
layer for different tasks. l is the loss function. DS

t is the source dataset for the given task.

• From source datasets, assuming ϕ̂ is fixed:

ĥT ← min
h
LT (h ◦ ϕ)

5



• Then the output predictor is:

ĥ ◦ ϕ̂

Intuitively, the reason why this can potentially make the learning procedure sample-efficient is that
for the source task, we have abundant number of samples to learn the complicated part and if
the learned representation is good, in the target task, only the last layer is learned which is also
sample-efficient due to its simplicity.

One question to consider is whether the learned ϕ has a good expressive power. For example, if the
learned representation function is just an identity mapping or a constant, then it would not help or
even become no longer expressive when making a prediction. Hence, even though in this case, the
learning procedure is sample-efficient. Bias is very high due to its weak expressive ability.

To conclude, the purpose of the learned shared representation is to make itself adapt to new tasks
quickly which depends on whether fT

θ can be expressed as hT∗ ◦ ϕ̂, where we want to maintain a
good expressive ability in ϕ.

3 Decomposition of generalization error in meta-learning

3.1 General form

If we see the output predictor as a single function:

f̂ := ĥ ◦ ϕ̂

the classical bias-variance reduction, or in statistical learning we call bias as approximation error
and variance as estimation error, can be decomposed as follows:

L(f̂)− L∗
=L(f̂)− min

f,cont.
L(f)

=L(f̂)−min
f∈F
L(f) + min

f∈F
L(f)− min

f,cont.
L(f)

where L is the loss function and F is our choices of function class.

Now we can observe that L(f̂)−min
f∈F
L(f) is the estimation error and min

f∈F
L(f)− min

f,cont.
L(f) is the

approximation error.
More specifically,

• L(f̂)−min
f∈F
L(f) is the estimation error because this error comes from using a finite number

samples to estimate a function compared with knowing data concrete distribution to estimate.

• min
f∈F
L(f)− min

f,cont.
L(f) is the approximation error because it’s about how expressive our choice

of function class is. For example, choosing a wide and deep neural network would result in a
lower approximation error compared to a quadratic function.

6



3.2 Fixing ϕ̂

Knowing that f̂ := ĥ ◦ ϕ̂, we can add two extra terms in the decomposition obtained above, which is:

LT (ĥ ◦ ϕ̂)−min
h∈H
LT (h ◦ ϕ̂) + min

h∈H
LT (h ◦ ϕ̂)−min

f∈F
LT (f) + min

f∈F
LT (f)− LT∗

where

• LT (ĥ ◦ ϕ̂)−min
h∈H
LT (ĥ ◦ ϕ̂) is the adaptation error (III). Error caused by not learning the last

layer optimally due to the limit of finite samples.

• min
h∈H
LT (ĥ ◦ ϕ̂)−min

f∈F
LT (f) is the approximation error (II) due to fixed representation. This

error comes from fixing ϕ̂ as ϕ̂ can be freely selected in the second term but not in the first.

• min
f∈F
LT (f)−LT∗ is the approximation error (I) due to architecture. For example, the error due

to choosing the architecture to be ResNet, VGG...

4 Some upper bounds on the generalization error

4.1 Assumptions

We will now attempt to provide upper bounds for the generalization error in the context of multitask
learning via shared representations [3, 6]

We again assume the availability of T source tasks, where each task t ∈ T is described by ns i.i.d
samples which can be expressed as an input matrix Xt ∈ Rns×d and a target vector yt ∈ Rns

The shared representation between the different tasks, which describes their common properties, is
a function ϕ ∈ Φ : Rd → Z. Which as mentioned previously, maps the input to some feature space
z ⊆ Rk. To adapt to different tasks, this shared representation is composed with a task specific
function h ∈ H : Z → R to produce the outputs.

To be able to derive acceptable upper bounds, we make two important assumptions

• Attainability of the Bayes optimal predictor.

• Task diversity

The first assumption guarantees the existence of a shared representation by which the task specific
Bayes predictor f∗

i is attainable.

∃ϕ∗ ∈ Φ such that f∗ ∈ H ◦ ϕ∗

where
H ◦ ϕ∗ = {h ◦ ϕ∗|h ∈ H}

The second assumption can be intuitively described as follows, given a set of source tasks, the
information acquired from that set should allow for new tasks to be solved. Specifically, in case of

7



linear functions h, let h1, . . . , hT , be the source task specific prediction functions, then for any new
test task, its prediction function htest must be expressible as a linear combination of h1, . . . , hT .

htest ∈ span(h1, . . . , hT )

4.2 Exactly shared structure

For the usual formulation of an exact shared structure across different tasks the following bounds
can be attained

E = LT (ĥ ◦ ϕ̂)−min
h∈H
LT (h ◦ ϕ̂)︸ ︷︷ ︸

Adaptation error

+min
h∈H
LT (h ◦ ϕ̂)−min

f∈F
LT (f)︸ ︷︷ ︸

Representation Error

+ min
f∈F
LT (f)− LT∗︸ ︷︷ ︸

Approximation Error

From our first assumption we know that there is no approximation error, and depending on the
family of representation functions Φ and a complexity measure C we have the following

Linear representations and linear predictor

E ≤ dk

nsT
+

k

nt

Non-Linear representations and linear predictor

E ≤ C(Φ)
nsT

+
k

nt

Non-Linear representations and non-linear predictor

E ≤ C(Φ)
nsT

+
C(H)
nt

which are all acceptable bounds with a fast convergence rate.

4.3 Fine tuning the shared structure

One issue of the above approach is the assumption of the existence of an exact shared structure
among different tasks. This problem becomes apparent in the presence of misspecifications

yi = hi ◦ ϕ+ wn

where wn can be noise. One straightforward approach [2] is to also allow for adaptation on the
representation. Therefore, on a new task, instead of solving

min
h

1

nt

nt∑
i=1

l(yi, h
Tϕθ∗(xi))

8



as before, we solve for the training

min
θ0

min
θt,ht

∥θt−θ0∥≤γ

1

ns

1

T

ns∑
i=1

l(yi,t, h
T
t ϕθt(xi))

and for the testing step

min
θ

∥θ−θ0∥≤γ

min
h

1

nt

nt∑
i=1

l(yi, h
Tϕθ(xi))

This approach has obvious similarities with MAML since all model parameters are adaptable, however
unlike MAML, the degree at which the model can adapt is constrained since the representation
component can only adapt inside a γ-ball centered at θ0. Another difference is that no train-validation
splits are used, as is widespread in MAML.

In addition, regarding the generalization error upper bound in this case, if we refer to the previous
upper bound as Eexactly-shared then

E ≤ Eexactly-shared +
γ
√
nT

Intuition behind the disadvantages of having a shared representation

First assume that the representation is linear, thus it can be described by a matrix Φ ∈ Rk×d. If
the representation is shared, then using the usual notation, the optimization problem is

Φ̂ = argmin
Φ

min
h1,...,hT

1

2nsT

T∑
i=1

∥yt −XtΦht∥22
ns→∞−−−−→ 1

2T

∑
t∈[T ]

∥Φ∗h∗t − Φht∥2Σ

the obvious problem in this case, which is not present when finetuning the representation, is that
the representation is based on the prediction space norm instead of the parameter space norm,
resulting in potentially completely failing to find a useful Φ. Fine tuning, thus allows to properly
handle misspecifications and to effectively meta learn.

References

[1] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation Learning: A Review and
New Perspectives. 2014. arXiv: 1206.5538 [cs.LG].

[2] Kurtland Chua, Qi Lei, and Jason D. Lee. How Fine-Tuning Allows for Effective Meta-Learning.
2021. arXiv: 2105.02221 [cs.LG].

[3] Simon S. Du et al. Few-Shot Learning via Learning the Representation, Provably. 2021. arXiv:
2002.09434 [cs.LG].

[4] Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-Agnostic Meta-Learning for Fast
Adaptation of Deep Networks”. In: Proceedings of the 34th International Conference on Machine
Learning. Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine Learning
Research. PMLR, June 2017, pp. 1126–1135. url: https://proceedings.mlr.press/v70/
finn17a.html.

9



[5] Jake Snell, Kevin Swersky, and Richard S. Zemel. Prototypical Networks for Few-shot Learning.
2017. arXiv: 1703.05175 [cs.LG].

[6] Nilesh Tripuraneni, Michael I. Jordan, and Chi Jin. On the Theory of Transfer Learning: The
Importance of Task Diversity. 2020. arXiv: 2006.11650 [cs.LG].

10


