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1 Recap

Neural Tangent Kernel (NTK): Defined as x 7→ θTϕ(x), where θ is over-parameterized and ϕ(x) is
high dimensional. This can easily lead to overfitting under traditional statistical learning framework.
This leads to our motivation of understanding generalization.

• Uniform Convergence

Generalization Gap ≤
√

G(Θ)
n , where G(Θ) is complexity of function and can be arbitrarily large.

This needs some kind of boundedness in the function class with explicit regularization defined as
min
∥θ∥≤R

L(θ) ⇐⇒ min
θ
L(θ) + λ∥θ∥, which has same effect as controlling ∥θ∥ ≤ R.

• (Zhang et al. 2017, [3]) Understand Deep Learning Requires Rethinking Generalization

This paper found that Neural Network (NN) can fit random labels with Train Error = 0. However,
generalization is terrible in this case with Test Error ≃ Random Guess. This means that neural
networks are able to capture the remaining signal in the data, while at the same time fit the noisy
part using brute-force.

To understand this, we study Implicit Regularization, which states that Gradient Descend (GD)
performs some implicit regularization to find better global minimum hence generalizing well.
Geometrically, it can be illustrated as Figure 1, where GD helps to find flatter minimum and hence
the difference between train and test loss is smaller.

Test Loss

Train Loss

Figure 1: Train vs. Test Loss. The generalization error is larger for sharper minima.
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Figure 2: Loss Functions

2 Implicit Regularization in Linear and Overparametrized Setting

Given n equations and m unknowns and a function F (θ,X) = y, y ∈ Rn and θ ∈ Rm, we say the
function is overparametrized when m > n. For example, consider min

θ
L(θ) = 1

2∥F (θ,X) − y∥2,
n = 2, m = 3.

• (Soudry et al. 2018, [2]) The Implicit Bias of Gradient Descent on Separable Data

Consider a setting where the target function fθ(X) = θ⊤X and data {(xi, yi)ni=1}, where fθ : R →
R, xi ∈ Rd, yi ∈ {−1, 1} for the problem is 1) binary classification, 2) linear separable 3) without
bias term. Then, we can examine the effect on different loss functions as shown in Figure 2, where
exponential loss is ℓ(u) = e−u, logistic loss is ℓ(u) = log(1+e−u) for u := yfθ(x). Notice that 0-1 loss
or hinge loss will not show explicit effect because they have too small loss on correct classification.

For L(θ) =
∑n

i=1 ℓ(yiθ
⊤xi), taking zi = yixi to have

∑n
i=1 ℓ(θ

⊤zi). This now gives the optimization
objective min

θ

∑n
i=1 ℓ(θ

T zi).

Formally, we have

Assumption 1. The dataset is linearly separable: ∃θ∗ such that ∀n : θ⊤∗ xn > 0.

Assumption 2. ℓ(u) is a positive, differentiable, monotonically decreasing to zero, (so ∀u :
ℓ(u) > 0, ℓ′(u) < 0, limu→∞ ℓ′(u) = 0), a β-smooth function, i.e. its derivative is β-Lipschitz,
and lim supu→−∞ ℓ′(u) < 0.

Assumption 2 includes many common loss functions, including the logistic, exp-loss and probit
losses. Assumption 2 implies that L(θ) is a βσ2

max-smooth function, where σmax(X) is the maximal
singular value of the data matrix X ∈ Rd×N .

Under these conditions, the infimum of the optimization problem is zero, but it is not attained at
any finite θ. In fact, no finite critical point θ exists. Since data is linearly separable, there exists θ∗,
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such that z⊤i θ
∗ > 0 for all i. Then

θ∗⊤∇L(θ) =
n∑

i=1

ℓ′(θ⊤zi) · zTi θ∗ < 0

since ℓ′(θ⊤zi) < 0 according to Assumption 2. Therefore, ∇L(θ) ̸= 0 and it further implies that
there are no finite critical point for L. However, GD on a smooth loss converge to critical point (with
proper stepsize) so ∥θ(t)∥ → ∞. It is also direct that limt→∞∇L(θ(t)) → 0 and ℓ′(θ(t);xi) → 0
when t → 0. Then our main question becomes what direction will the weight converges, or
formally, what is limt→∞

θ(t)
∥θ(t)∥ .

3 Hard SVM

Before we answer the our main question, we first introduce hard SVM problem of separable data.
For a hard SVM problem, we are going to find the solution with max margin (as shown in Figure
3). Formally, we solve the following optimization problem:

min ∥θ∥2, s.t. θ⊤zi ≥ 1 for any i. (1)

For those samples satisfying θ⊤SVMzi = 1, we call them support vectors (the samples on the dashed
lines in Figure 3) and denote by xi ∈ SV. Based on support vectors, we can define the margin by

γ := θSVM
∥θSV M∥

T
zi, for xi ∈ SV. The KKT condition for the hard SVM problem is as follows:

θSVM =
n∑

i=1

αixi =
∑

xi∈SV
αixi (αi = 0, if xi /∈ SV ). (2)

Figure 3: Hard SVM. The solid line is the solution and support vectors are listed are the dashed
lines.
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In the next section, we will show that if we optimize the problem

min
θ

n∑
i=1

ℓ(θ⊤zi)

with gradient descent

θ(t+ 1)← θ(t)− η∇L(θ(t))

= θ(t)− η
n∑

i=1

ℓ′(θ(t)⊤zi)zi

the direction of the weight will converge to the hard SVM solution

θ(t)

∥θ(t)∥
→ θSVM

∥θSVM∥
. (3)

4 Main Results

Before we come to our first result, we need some additional assumptions to the loss function ℓ(θ).

Assumption 3. The loss function ℓ has exponential tail.

For example, the exponential loss and the logistic loss satisfy this assumption.

Theorem 1 (Theorem 3 from [2]). With Assumption 1-3, small enough step size η and any starting
point θ(0), gradient descent behave as:

θ(t) = θSVM log(t) + ρ(t), (4)

where the residue ρ grows at most as ∥ρ(t)∥ = O(log log t), and so

lim
t→∞

θ(t)

∥θ(t)∥
=

θSVM

∥θSVM∥
. (5)

Proof Sketch. For simplicity, we assume that the loss function is ℓ(u) = e−u and θ(t)⊤zi → ∞
for any i. We also assume that θ(t)

∥θ(t)∥ → θ∞ for some θ∞. Then we can write the weight as

θ(t) = g(t)θ∞ + ρ(t), where limt→∞
ρ(t)
g(t) = 0. Thus, the gradient can be written as:

−∇L(θ) =
n∑

i=1

exp(−θ(t)⊤zi)zi

≈
n∑

i=1

exp(−g(t)θ⊤∞zi)zi,

(6)

where we omitted ρ(t). Note that g(t) → ∞, then only those samples with smallest θ⊤∞zi will
contribute to the gradient. The samples argminiθ

⊤
∞zi are exactly the support vectors. Then the

negative gradient is dominated by these vectors:

−∇L(θ(t)) ≈
∑
i∈SV

α′
izi (7)
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as t→∞. Thus, the limit θ∞ will also be dominated by the support vectors:

θ∞ =
∑
i∈SV

α′′
i zi. (8)

We denote the normalized version of θ∞ by θ̂ := θ∞
mini ∞⊤zi

. Then we have θ̂⊤zi = 1 for any i ∈ SV and

θ̂ =
∑n

i=1 αizi, where αi = 0 when i /∈ SV and αi ̸= 0 when i ∈ SV. Note that this is precisely the

KKT condition of hard-SVM problem. Thus, θ̂ = θSVM and therefore, limt→∞
θ(t)

∥θ(t)∥ = θSVM
∥θSVM∥ .

Theorem 1 implies the following results on the rates of convergence:

Theorem 2 (Theorem 5 from [2]). Under the assumptions of Theorem 1, the normalized weight
vector converges to the normalized max-margin vector as∥∥∥∥ θ(t)

∥θ(t)∥
− θSVM

∥θSVM∥

∥∥∥∥ = O

(
log log t

log t

)
(9)

while the loss decreases as

L(θ(t)) = O

(
1

t

)
. (10)

The difference between the O( log log tlog t ) and O(1t ) implies that the convergence of the loss is much
faster than the convergence of weight θ(t) towards θSVM. So the continually training with gradient
descent improves the generalization, even when the loss is very small.

5 Implicit Bias of GD on Neural Networks

We define a function f to be homogeneous if there exists α such that f(cθ) = cαf(θ) for any c > 0.
For example, a ReLU neural network f is homogeneous since f(cθ) = cLf(θ), where L is the number
of layers.

For a homogeneous neural network, we can define the normalized margin similar to linear model:

γ(θ) = min
i∈[n]

yif(
θ

∥θ∥
;xi). (11)

The implicit bias of gradient descent (or gradient flow) on homogeneous neural network is that the
normalized margin is approximately monotone increasing during the optimization process. Thus,
the normalized weight is roughly converging towards the direction that maximize the normalized
margin. A more precise (but still informal) statement is as follows:

Theorem 3 (Theorem 4.1 and 4.2 from [1]). Under certain assumptions, there exists an approxi-
mation function γ̂(θ) close to the normalized margin γ(θ) and t0, such that gradient descent (or
gradient flow) satisfies

1. For a.e. t > t0, γ̂(θ(t)) is monotone increasing;

2. |γ̂(θ(t))− γ(θ(t))| → 0, when t→∞.
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