
DS-GA 3001 Modern Topics on Statistical Learning Spring 2023

Lecture 5 — Feb. 24, 2023

Prof. Qi Lei Scribe: Nikita Anand, Bale Chen, Swapnil Sharma

Recap

In the first three lectures, we talked about generalization, which solves the key question – if the
global optimum of the empirical risk is found, does the optimal solution generalize to the population
risk function? Specifically, for

L(θ) : population risk , L̂n(θ) : empirical risk

we tried to show uniform convergence that with high probability 1− δ,

sup
θ∈Θ
|L̂n(θ)− L(θ)| ≤ ϵ

Uniform convergence implies generalization bound, which means the excess risk R(θ̂) is bounded
and “can be” small. We have shown that

R(θ̂) = |L̂n(θ̂)− L(θ∗)| ≤ 2ϵ

where
θ̂ = argmin

θ∈Θ
L̂n(θ)

θ∗ = argmin
θ∈Θ
L(θ)

Throughout the process, we assumed that θ̂ ← argminθ∈Θ L̂n(θ), but we didn’t discuss how we
actually solve for θ̂. Recall that generalization together with optimization forms the learning theory
and this lecture we start to touch upon the field of optimization.

In this lecture, we are going to introduce algorithms that optimize the objective and hopefully in
polynomial time.

1 Overview

A typical minimization program can be expressed as

min
θ∈Θ

f(θ)

where we find the θ that (approximately) minimizes objective function f over the parameter space
Θ. The result of such program is generally in the form of:

With a particular algorithm (e.g. gradient descent, Newton’s Method), we can achieve
the ϵ-suboptimality or ϵ-stationary point with timestep t ≥ poly(1ϵ , d, f(θ0)− f(θ∗)).

1

Definition 1 (ϵ-suboptimality) Given an objective funtion f(θ) and ϵ ∈ R, the ϵ-suboptimality is
achieved at timestep t ∈ N when

||θt − θ∗|| ≤ ϵ

or,
f(θt)− f(θ∗) ≤ ϵ

where θt represents the value of θ at timestep t and θ∗ is the optimal θ.

Definition 2 (ϵ-stationary point) Given an objective function f(θ) and ϵ ∈ R, at timestep t ∈ N,
θ = θt is an ϵ-stationary point when

||∇f(θt)|| ≤ ϵ

The time complexity of the algorithms depends on the conditions of the objection function f .
Typically, we focus on the convexity and smoothness properties. As for the algorithms, we will go
over the Gradient Descent (GD), Stochastic Gradient Descent (SGD), and Accelerated Gradient
Descent (AGD). Note that the time complexity of SGD is beyond the scope of our class. Table 1
depicts the time complexity for each algorithm to reach the ϵ-suboptimality or ϵ-stationary point
under certain conditions of f . In Section 4, we present the proofs under non-convex & L-smooth
scenario with GD as well as the µ-strongly convex & L-smooth scenario with AGD.

Conditions of f Algorithm

Convexity Smoothness GD AGD

Non-convex L-smooth O
(
1
ϵ2

)
(ϵ-stationary point) O

(
1

ϵ7/4

)
(ϵ-stationary point) [1]

Convex Not L-smooth O
(
1
ϵ2

)
(ϵ-suboptimality) \

Convex L-smooth O
(
1
ϵ

)
O
(√

1
ϵ

)
µ-strongly convex L-smooth L

µ log
(
1
ϵ

)
[3]

√
L
µ log

(
1
ϵ

)
(ϵ-suboptimality)

Table 1: The time complexity of GD and AGD under different conditions of f

2 Algorithms

2.1 Focus of this Class

Depending on the problem we are focusing we have:

1. Zero-order algorithms are challenging but useful when gradient and Hessian information are
difficult to obtain.

2. First-order algorithms are the most popular nowadays and our focus. It only requires the
function to be differentiable and the information is gained from function and its derivative.

2

3. Second-order algorithms are rare because computing Hessian is computationally redundant
and very time consuming.

Note that the order of the algorithm indicates how much information about the gradient is required
from the algorithm. For instance, the first-order algorithm requires the function itself and the
first-order derivative of the function. In this class, we are only focusing on first-order algorithms.

2.2 Gradient Descent (GD)

It’s the simplest gradient descent method where the objective is to minimize a differentiable convex
function f . Starting from an initial point, the gradient descent method updates the search point θ
according to:

θ0 ← Random Initialization

θt+1 := θt − ηt∇f(θt)

where ηt is the learning rate or step size

The rationale behind the algorithm is to move a small step along the direction that minimizes the
local first-order Taylor approximation of f .

2.3 Stochastic Gradient Descent (SGD)

This version of gradient descent is more commonly used in machine learning, due to the immense
computational cost of empirical risk. The algorithm is described as follow:

θt+1 := θt − ηt · gt

where gt is computed by
gt = ∇ℓ (fθt(xi), yi)

E[gt] = ∇L̂n(θt)

3

where ℓ is the loss function, i is randomly sampled from {1, 2 . . . n}. Thus, gt a random variable
where E[gt] = ∇L̂n(θt).

2.4 Accelerated Gradient Descent (AGD)

Accelerated Gradient Descent (AGD) is the most popular optimization algorithm in practice
nowadays. Typical examples include Adam, Adagrad, etc.

θt+1 := wt − ηt∇f(wt)

wt1 = θt+1 + r(θt+1 − θt)

This algorithm is called ”accelerated” because of its similarities with physics, where there is a
momentum when descending. It’s especially useful when the risk function is ill-conditioned. In other
words, for a certain point on the function surface, different direction has different rate of decreasing.

For more details on the algorithms, refer First-order and Stochastic Optimization Methods for
Machine Learning [2].

3 Conditions

3.1 L-smooth

Definition 3 A differentiable function f is L-smooth when it satisfies the following:

f(v) ≤ f(w) + ⟨∇f(w), v − w⟩+ L

2
||v − w||22

or,
||∇f(w)−∇f(v)|| ≤ L||w − v|| ∀ v,w

This property asserts that the gradient can not change too rapidly in a small local region.

In theory, we consider η ≤ 2
L is capable of descending.

Edge of Stability With non-smooth function, the learning rate (or step size) needs to be decreased
to avoid oscillating. Whereas with an L-smooth function, the gradient norm is automatically
descreasing around stationary point θ : ∇f(θ) = 0 and η doesn’t need to be decreased. This
condition makes the GD algorithms more efficient.

3.2 Convexity

3.2.1 Zero Order View

Definition 4 For a function f :

4

Convexity is given by,
f
(
αx+ (1− α)x′

)
≤ αf(x) + (1− α)f(x′)

∀ α ∈ [0, 1] ∀ x, x’

µ-strong convexity is given by,

f
(
αx+ (1− α)x′

)
≤ αf(x) + (1− α)f(x′)− µα(1− α)

2
∥x− x′∥2

∀ α ∈ [0, 1], ∀ x, x’

3.2.2 First Order View

Definition 5 For a differentiable function f :

Convexity is given by,
f(x′) ≥ f(x) +

〈
∇f(x), x′ − x

〉
∀ x, x’

µ-strong convexity is given by,

f(x′) ≥ f(x) +
〈
∇f(x), x′ − x

〉
+

µ

2
||x′ − x||2 where µ ≥ 0

3.2.3 Second Order View

Definition 6 For a twice differentiable function f :

Convexity is given by,
∇2f(x) ⪰ 0

µ-strong convexity is given by,
∇2f(x) ⪰ µI

or,
∇2f(x)− µI is positive semi-definite

Note

From the first order view, we also have:

f is convex ⇒
〈
∇f(x′)−∇f(x), x′ − x

〉
≥ 0 ∀ x, x′

We can use this property to choose a stationary point such that,〈
∇f(x′)− 0, x− x∗

〉
≥ 0

Moreover, the convexity of the objective function f also guarantees that when gradient descent is
performed, the updated paramter is always steering towards the global optimum.

5

4 Proofs of Time Complexity

4.1 Non-convex and L-Smooth Scenario with Gradient Descent

By definition of Gradient Descent we have,

θ+ ← θ − η∇f(θ)

Let η = 1
L . By the definition of L-smoothness,

f(θ+) = f(θ)− η∇f(θ) ≤ f(θ) +
〈
∇f(θ), θ+ − θ

〉
+

L

2
∥θ+ − θ∥2

Plug in θ+ − θ = −η∇f(θ) (update rule)

= f(θ)− ∥∇f(θ)∥
2

2L
⇐⇒ ∥∇f(θt)∥2 ≤ 2L (f(θt)− f(θt+1)) ∀t = 0, · · ·

We sum up over t. Notice that RHS can telescope.

T∑
t=1

∥∇f(θt)∥2 ≤ 2L (f(θt)− f(θt+1))

Since we know,

T · min
t∈[T]
∥∇f(θt)∥2 ≤

T∑
t=1

∥∇f(θt)∥2

Then,

min
t∈[T]
∥∇f(θt)∥2 ≤

2L

T
(f(θt)− f(θt+1)) ∝

√
1

T

=⇒ ∥∇f(θt)∥ ∝
√

1

T

To reach ϵ-stationary point by definition 2, we need to have,

θ : ∥∇f(θ)∥ ≤ ϵ

=⇒ T ≥ Ω

(
1

ϵ2

)

4.2 µ-strongly convex and L-Smooth Scenario with AGD

Recall the update formula for AGD where the learning rate is 1
L ,

wt+1 ← wt −
1

L
∇f(wt)

6

By definition of L-Smooth,

f(wt+1) ≤ f(wt) + ⟨∇f(wt), wt+1 − wt⟩+
L

2
||wt+1 − wt||2 ∀wt+1, wt

≤ min
w
{f(wt) + ⟨∇f(wt), w − wt⟩}+

L

2
∥w − wt∥2 (update rule)

≤ min
δ∈[0,1]

{f(wt) + ⟨∇f(wt), δ(w
∗ − wt)⟩+

L

2
∥δ(w∗ − wt)∥2} (1)

where changing to minimization over δ ∈ [0, 1] would form a smaller set for optimizing w.

By definition of µ-strong convexity,

f(wt+1) ≥ f(wt) + ⟨∇f(wt), wt+1 − wt⟩+
µ

2
∥wt+1 − wt∥2

Rearranging terms.

⟨∇f(wt), wt+1 − wt⟩ ≤ f(wt+1)− f(wt)−
µ

2
∥wt+1 − wt∥2

Plugging it in (1),

f(wt+1) ≤ min
δ∈[0,1]

{f(wt) + δ (f(w∗)− f(wt))−
δ2µ

2
∥w∗ − wt∥2 +

Lδ2

2
∥w∗ − wt∥2}

This will be proven in later classes,

f(wt+1) ≤ min
δ
{δ (f(w∗)− f(wt)) +

(L− µ)δ2

2
∥w∗ − wt∥2 + f(wt)}

≤ min
δ
{δ (f(w∗)− f(wt)) +

(L− µ)δ2

2
(f(w∗)− f(wt)) + f(wt)}

By setting δ,

δ =
µ

2(L− µ)

We eventually get,

f(wt+1) ≤
µ

4(L− µ)
(f(w∗)− f(wt)) + f(wt)

f(wt+1)− f(w∗) ≤
(
1− µ

4(L− µ)

)
(f(wt)− f(w∗))

f(wt+1)− f(w∗) ≤
(
1− µ

4(L− µ)

)t

(f(w1)− f(w∗))

7

References

[1] Chi Jin, Praneeth Netrapalli, and Michael I. Jordan. Accelerated Gradient Descent Escapes
Saddle Points Faster than Gradient Descent. Nov. 28, 2017. arXiv: 1711.10456[cs,math,stat].
url: http://arxiv.org/abs/1711.10456.

[2] Guanghui Lan. First-order and Stochastic Optimization Methods for Machine Learning. Springer
Series in the Data Sciences. Cham: Springer International Publishing, 2020. isbn: 978-3-030-
39567-4 978-3-030-39568-1. doi: 10.1007/978-3-030-39568-1.

[3] Yu Nesterov. Introductory Lectures on Convex Programming Volume I: Basic course.

8

