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1 Introduction

Recap Last week we showed that uniform convergence implies generalization. That is, over the
data distribution Py y,
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Additionally, we showed convergence for (1) a finite hypothesis class H

L(h) — Lo (h) < O ( lg'”'>
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and (2) a bounded p-dimensional ls ball defined by H = {h | ho, ||0]|2 < B}
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where O(g(n)) is equivalent to O(g(n)log® n) for some k.

This week For a more general hypothesis class, we first seek a weaker result

E |sup L(h) — ﬁn(h)} < upper bound
S lhen

where S = {(x;,y;)}"_;. This result is weaker because we are proving a bound for an expectation
over samplings of our data rather than guaranteeing a bound for all possible samplings.



2 Rademacher complexity

Definition 1 ((average) Rademacher complexity). Let F be a family of functions mapping
Z — R, and let P be a distribution over Z.

The (average) Rademacher complexity of F is
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where o; are Rademacher random variables
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Notice that when |F| = 1, the inner supremum will be close to 0, but when |F| is large, we expect
R,.(F) to also be large.

Theorem 1.

Applied to our setting, we have

F={z=(z,y) = Ll(h(x),y) eERLAheH}CX XY >R
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Corollary 1.

Eﬁd [sup Ln(h) — L(R)| < 2R, (F)
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However, in practice we don’t know the true distribution Py y, therefore, we formulate the empirical
Rademacher complexity:

Definition 2 (empirical Rademacher complexity).
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Accordingly, the relationship between the average and empirical Rademacher complexities is

Ro(F) = ER(F)

Theorem 2. Suppose Vf € F,Vz € Z,0< f(z) <1, then with probability > 1 — ¢,
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This states that the difference between the empirical and population risks is bounded by the empir-
ical Rademacher complexity, and we can derive a corresponding generalization bound.

Proof. (1) Recall the bounded difference condition and its implication, McDiarmid’s inequality:
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Now, define g(z1,...,2n) £ supser [£ 301, f(2i) —E f(z)]. Notice that this definition of g satisfies

the bounded difference condition with ¢; = +. This is because 0 < f(-) < 1, so changing z to z] will
change f(-) by at most 1, and this value is then scaled by a factor of +.

= P(g(z1, .., zn) — Elg(21, ..., 20)] = t) < exp(—

(2) Applying McDiarmid’s inequality to g, we find

P(g(z1, .y 20) > Ig[g} +e) <exp(—=——>

(3) Now, by Theorem 1,

E g= E lsup [1an<zi>Ef(z>Hsm<f>
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(4) Next, we will connect R,,(F) to Rs(F). Define

(21, 2n) = Rs(F) 2 E
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g also satisfies the bounded condition with ¢; = % for the same reason as g. Thus,

P(j(21, .., 2n) — E[§] > €) < exp(—2ne?)

or, equivalently,

P(§(21s s 20) — E[Rn(F)] = €) < exp(—2ne?)



This shows that the difference between the average and empirical Rademacher complexities is tightly
bounded and follows from the boundedness of f.
(5) Finally, if we set exp (—2ne?) = §/2, we get
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<E[g] +¢ (from (2), w.p. 1 — )
< 2R, (F)+e (from Theorem 1)
<2(Rs(F)+e€)+e (from (4), w.p. 1 — g)
= 2R,(F) + 3¢

Thus, with probability 1 — 6,
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3 Properties of R, (F)
Translation invariant

Rn(F.) =R, (F) for all ¢, where F.:={f'(z) = f(z) +c| f € F}

Reflection invariant

Ro(F) =Rp(—F) where —F ={—f|feF}

4 Examples of R, (F)

4.1 Linear function

For some constant B > 0, let
H={r — (w,2) |w e R |Jw|s € B},
then
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Moreover, if E,p[||z[3] < C?, where P is some distribution and C' > 0 is a constant, then
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Rn(H) < T



4.2 Two-layer neural network

Consider fp(z) = (w, ¢(j,)) where w € R™ and ¢(u,) € R™*4,
For some constants B,, > 0 and B, > 0, let

H={folllwllz < Bu, llpll2 < By, Vi € {1,2,...

and suppose E[||z|?] < C?, then

R, (H) < 2B, B,C, /%

For more details, please refer to (Du, Lee, 2017).

4.3 Deep neural network

Suppose that Vi, |||y < 2 and let
F o= Ao+ [Willop < ki [W 121 < bi}-

Then

For more details, please refer to (Bartlett et al., 2017).



