Modern Topics in Statistical Learning Theory Lecture 4 Notes

Joseph Cappadona, Joseph Stansil, Boyuan Zhang

February 17, 2023

1 Introduction

Recap Last week we showed that uniform convergence implies generalization. That is, over the data distribution $\mathcal{P}_{\mathcal{X}, \mathcal{Y}}$,

$$
\sup _{\theta \in \Theta}\left[L(\theta)-\hat{L}_{n}(\theta)\right] \leq \epsilon \text { w.h.p } \Rightarrow \mathrm{£}(\hat{\theta})-L\left(\theta^{*}\right) \leq 2 \epsilon
$$

where

$$
\begin{aligned}
& \hat{\theta} \leftarrow \operatorname{argmin}_{\theta \in \Theta} \hat{L}_{n}(\theta) \\
& \theta^{*} \leftarrow \operatorname{argmin}_{\theta \in \Theta} L(\theta)
\end{aligned}
$$

Additionally, we showed convergence for (1) a finite hypothesis class \mathcal{H}

$$
\left|L(h)-\hat{L}_{n}(h)\right| \leq \tilde{O}\left(\sqrt{\frac{\log |\mathcal{H}|}{n}}\right)
$$

and (2) a bounded p-dimensional l_{2} ball defined by $\mathcal{H}=\left\{h \mid h_{0},\|\theta\|_{2} \leq B\right\}$

$$
\left|L(h)-\hat{L}_{n}(h)\right| \leq \tilde{O}\left(\sqrt{\frac{p}{n}}\right)
$$

where $\tilde{O}(g(n))$ is equivalent to $O\left(g(n) \log ^{k} n\right)$ for some k.

This week For a more general hypothesis class, we first seek a weaker result

$$
\underset{S}{\mathbb{E}}\left[\sup _{h \in \mathcal{H}} L(h)-\hat{L}_{n}(h)\right] \leq \text { upper bound }
$$

where $S:=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$. This result is weaker because we are proving a bound for an expectation over samplings of our data rather than guaranteeing a bound for all possible samplings.

2 Rademacher complexity

Definition 1 ((average) Rademacher complexity). Let \mathcal{F} be a family of functions mapping $Z \rightarrow \mathbb{R}$, and let \mathcal{P} be a distribution over Z.

The (average) Rademacher complexity of \mathcal{F} is

$$
\Re_{n}(\mathcal{F}) \triangleq \underset{z_{1}, \ldots, z_{n} \sim}{\mathbb{E}}\left[\underset{\sigma_{1}, \ldots, \sigma_{n}}{\mathbb{E}}\left[\sup _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} f\left(z_{i}\right)\right]\right]
$$

where σ_{i} are Rademacher random variables

$$
\sigma_{i}= \begin{cases}1 & \text { w.p. } 1 / 2 \\ -1 & \text { w.p. } 1 / 2\end{cases}
$$

Notice that when $|\mathcal{F}|=1$, the inner supremum will be close to 0 , but when $|\mathcal{F}|$ is large, we expect $\Re_{n}(\mathcal{F})$ to also be large.

Theorem 1.

$$
\underset{z_{1}, \ldots, z_{n} \sim}{\mathbb{E} \sim} \underset{\sim}{\mathcal{i} \mathcal{P}_{\mathcal{X}, \mathcal{Y}}}\left[\underset{\sup }{f \in \mathcal{F}}\left[\frac{1}{n} \sum_{i=1}^{n} f\left(z_{i}\right)-\underset{z \sim \mathcal{P}_{\mathcal{X}, \mathcal{Y}}}{\mathbb{E}} f(z)\right]\right] \leq 2 \Re_{n}(\mathcal{F})
$$

Applied to our setting, we have

$$
\begin{gathered}
\mathcal{F}=\{z=(x, y) \mapsto \ell(h(x), y) \in \mathbb{R}, h \in \mathcal{H}\} \subseteq \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R} \\
\frac{1}{n} \sum_{i=1}^{n} \ell\left(h\left(x_{i}\right), y_{i}\right)=: \hat{L}_{n}(h)
\end{gathered}
$$

Corollary 1.

$$
\underset{z_{1}, \ldots, z_{n} \sim}{\mathbb{E} \sim \mathcal{P}_{\mathcal{X}, \mathcal{Y}}^{\text {id }}}\left[\sup _{h \in \mathcal{H}} \hat{L}_{n}(h)-L(h)\right] \leq 2 \Re_{n}(\mathcal{F})
$$

However, in practice we don't know the true distribution $\mathcal{P}_{\mathcal{X}, \mathcal{Y}}$, therefore, we formulate the empirical Rademacher complexity:

Definition 2 (empirical Rademacher complexity).

$$
\Re_{s}(\mathcal{F}) \triangleq \underset{\sigma_{1}, \ldots, \sigma_{n}}{\mathbb{E}}\left[\sup _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} f\left(z_{i}\right)\right]
$$

for $S:=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$

Accordingly, the relationship between the average and empirical Rademacher complexities is

$$
\Re_{n}(\mathcal{F})=\underset{S}{\mathbb{E}} \Re_{s}(\mathcal{F})
$$

Theorem 2. Suppose $\forall f \in \mathcal{F}, \forall z \in Z, 0 \leq f(z) \leq 1$, then with probability $\geq 1-\delta$,

$$
\sup _{f \in \mathcal{F}}\left[\frac{1}{n} \sum_{i=1}^{n} f\left(z_{i}\right)-\mathbb{E} f(z)\right] \leq 2 \Re_{s}(\mathcal{F})+3 \sqrt{\frac{\log (2 / \delta)}{2 n}}
$$

This states that the difference between the empirical and population risks is bounded by the empirical Rademacher complexity, and we can derive a corresponding generalization bound.

Proof. (1) Recall the bounded difference condition and its implication, McDiarmid's inequality:

$$
\begin{aligned}
& \left|g\left(x_{1}, \ldots, x_{n}\right)-g\left(x_{1}, \ldots, x_{i-1}, x_{i}^{\prime}, x_{i+1}, \ldots, x_{n}\right)\right| \leq c_{i} \quad \forall x_{1}, \ldots, x_{n}, x_{i}^{\prime} \\
& \quad \Rightarrow P\left(g\left(x_{1}, \ldots, x_{n}\right)-\mathbb{E}\left[g\left(x_{1}, \ldots, x_{n}\right)\right] \geq t\right) \leq \exp \left(-\frac{-2 t^{2}}{\sum_{i=1}^{n} c_{i}^{2}}\right)
\end{aligned}
$$

Now, define $g\left(z_{1}, \ldots, z_{n}\right) \triangleq \sup _{f \in \mathcal{F}}\left[\frac{1}{n} \sum_{i=1}^{n} f\left(z_{i}\right)-\mathbb{E} f(z)\right]$. Notice that this definition of g satisfies the bounded difference condition with $c_{i}=\frac{1}{n}$. This is because $0 \leq f(\cdot) \leq 1$, so changing z to z_{i}^{\prime} will change $f(\cdot)$ by at most 1 , and this value is then scaled by a factor of $\frac{1}{n}$.
(2) Applying McDiarmid's inequality to g, we find

$$
\begin{aligned}
P\left(g\left(z_{1}, \ldots, z_{n}\right) \geq \underset{z}{\mathbb{E}}[g]+\epsilon\right) & \leq \exp \left(-\frac{2 \epsilon^{2}}{\sum_{i=1}^{n} c_{i}^{2}}\right) \\
& \leq \exp \left(-2 n \epsilon^{2}\right)
\end{aligned}
$$

(3) Now, by Theorem 1,

$$
\underset{z_{1}, \ldots, z_{n} \sim}{\mathbb{E} \sim \mathcal{P}} \underset{\sim}{\mathbb{i i d}} g=\underset{z_{1}, \ldots, z_{n} \sim}{\mathbb{E}} \underset{\sim}{\sim} \mathcal{P}\left(\sup _{f \in \mathcal{F}}\left[\frac{1}{n} \sum_{i=1} n f\left(z_{i}\right)-\mathbb{E} f(z)\right]\right] \leq 2 \Re_{n}(\mathcal{F})
$$

(4) Next, we will connect $\Re_{n}(\mathcal{F})$ to $\Re_{s}(\mathcal{F})$. Define

$$
\tilde{g}\left(z_{1}, \ldots, z_{n}\right)=\Re_{s}(\mathcal{F}) \triangleq \underset{\sigma_{i}}{\mathbb{E}}\left[\sup _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} f\left(z_{i}\right)\right]
$$

\tilde{g} also satisfies the bounded condition with $c_{i}=\frac{1}{n}$ for the same reason as g. Thus,

$$
P\left(\tilde{g}\left(z_{1}, \ldots, z_{n}\right)-\mathbb{E}[\tilde{g}] \geq \epsilon\right) \leq \exp \left(-2 n \epsilon^{2}\right)
$$

or, equivalently,

$$
P\left(\tilde{g}\left(z_{1}, \ldots, z_{n}\right)-\mathbb{E}\left[\Re_{n}(\mathcal{F})\right] \geq \epsilon\right) \leq \exp \left(-2 n \epsilon^{2}\right)
$$

This shows that the difference between the average and empirical Rademacher complexities is tightly bounded and follows from the boundedness of f.
(5) Finally, if we set $\exp \left(-2 n \epsilon^{2}\right)=\delta / 2$, we get

$$
\begin{aligned}
g & :=\sup _{f \in \mathcal{F}}\left[\frac{1}{n} \sum_{i=1}^{n} f\left(z_{i}\right)-\mathbb{E}[f(z)]\right] & & \\
& \leq \mathbb{E}[g]+\epsilon & & \text { (from (2), w.p. } 1-\frac{\delta}{2} \text {) } \\
& \leq 2 \Re_{n}(\mathcal{F})+\epsilon & & \text { (from Theorem 1) } \\
& \leq 2\left(\Re_{s}(\mathcal{F})+\epsilon\right)+\epsilon & & \text { (from (4), w.p. } 1-\frac{\delta}{2} \text {) } \\
& =2 \Re_{s}(\mathcal{F})+3 \epsilon & &
\end{aligned}
$$

Thus, with probability $1-\delta$,

$$
\begin{aligned}
\sup _{f \in \mathcal{F}}\left[\frac{1}{n} \sum_{i=1}^{n} f\left(z_{i}\right)-\mathbb{E}[f(z)]\right] & \leq 2 \Re_{s}(\mathcal{F})+3 \epsilon \\
& =2 \Re_{s}(\mathcal{F})+3 \sqrt{\frac{\log (2 / \delta)}{2 n}}
\end{aligned}
$$

3 Properties of $\Re_{n}(\mathcal{F})$

Translation invariant

$$
\Re_{n}\left(\mathcal{F}_{c}^{\prime}\right)=\Re_{n}(\mathcal{F}) \text { for all } c, \text { where } \mathcal{F}_{c}^{\prime}:=\left\{f^{\prime}(z)=f(z)+c \mid f \in \mathcal{F}\right\}
$$

Reflection invariant

$$
\Re_{n}(\mathcal{F})=\Re_{n}(-\mathcal{F}) \quad \text { where }-\mathcal{F}:=\{-f \mid f \in \mathcal{F}\}
$$

4 Examples of $\Re_{n}(\mathcal{F})$

4.1 Linear function

For some constant $B>0$, let

$$
\mathcal{H}:=\left\{x \rightarrow(w, x) \mid w \in \mathbb{R}^{d},\|w\|_{2} \in B\right\}
$$

then

$$
\Re_{s}(\mathcal{H}) \leq \frac{B}{n} \sqrt{\sum_{i=1}^{n}\left\|x_{i}\right\|^{2}}
$$

Moreover, if $\mathbb{E}_{x \sim P}\left[\|x\|_{2}^{2}\right] \leq C^{2}$, where P is some distribution and $C>0$ is a constant, then

$$
\Re_{n}(\mathcal{H}) \leq \frac{B C}{\sqrt{n}}
$$

4.2 Two-layer neural network

Consider $f_{\theta}(x):=\left\langle w, \phi\left(\mu_{x}\right)\right\rangle$ where $w \in \mathbb{R}^{m}$ and $\phi\left(\mu_{x}\right) \in \mathbb{R}^{m \times d}$.
For some constants $B_{w}>0$ and $B_{\mu}>0$, let

$$
\mathcal{H}:=\left\{f_{\theta} \mid\|w\|_{2} \leq B_{w},\left\|\mu_{i}\right\|_{2} \leq B_{\mu}, \forall i \in\{1,2, \ldots, m\}\right\}
$$

and suppose $\mathbb{E}\left[\|x\|^{2}\right] \leq C^{2}$, then

$$
\Re_{n}(\mathcal{H}) \leq 2 B_{w} B_{\mu} C \sqrt{\frac{m}{n}}
$$

For more details, please refer to (Du, Lee, 2017).

4.3 Deep neural network

Suppose that $\forall i,\left\|x^{(i)}\right\|_{2} \leq 2$ and let

$$
\tilde{\mathcal{F}}:=\left\{f_{\theta}:\left\|W_{i}\right\|_{o p} \leq k_{i},\left\|W_{i}^{T}\right\|_{2,1} \leq b_{i}\right\}
$$

Then

$$
\Re_{s}(\mathcal{F}) \leq \frac{c}{\sqrt{n}} \cdot\left(\prod_{i=1}^{r} k_{i}\right) \cdot\left(\sum_{i=1}^{r} \frac{b_{i}^{\frac{2}{3}}}{k_{i}^{\frac{2}{3}}}\right)^{\frac{3}{2}}
$$

For more details, please refer to (Bartlett et al., 2017).

