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1 Introduction

Recap Last week we showed that uniform convergence implies generalization. That is, over the
data distribution PX ,Y ,

sup
θ∈Θ

[
L(θ)− L̂n(θ)

]
≤ ϵ w.h.p ⇒  L(θ̂)− L(θ∗) ≤ 2ϵ

where
θ̂ ← argminθ∈ΘL̂n(θ)

θ∗ ← argminθ∈ΘL(θ)

Additionally, we showed convergence for (1) a finite hypothesis class H

|L(h)− L̂n(h)| ≤ Õ

(√
log |H|

n

)
and (2) a bounded p-dimensional l2 ball defined by H = {h | h0, ∥θ∥2 ≤ B}

|L(h)− L̂n(h)| ≤ Õ

(√
p

n

)
where Õ(g(n)) is equivalent to O(g(n) logk n) for some k.

This week For a more general hypothesis class, we first seek a weaker result

E
S

[
sup
h∈H

L(h)− L̂n(h)

]
≤ upper bound

where S := {(xi, yi)}ni=1. This result is weaker because we are proving a bound for an expectation
over samplings of our data rather than guaranteeing a bound for all possible samplings.
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2 Rademacher complexity

Definition 1 ((average) Rademacher complexity). Let F be a family of functions mapping
Z → R, and let P be a distribution over Z.

The (average) Rademacher complexity of F is

ℜn(F) =∆ E
z1,...,zn

iid∼P

[
E

σ1,...,σn

[
sup
f∈F

1

n

n∑
i=1

σif(zi)

]]
where σi are Rademacher random variables

σi =

{
1 w.p. 1/2

−1 w.p. 1/2

Notice that when |F| = 1, the inner supremum will be close to 0, but when |F| is large, we expect
ℜn(F) to also be large.

Theorem 1.

E
z1,...,zn

iid∼PX ,Y

[
sup
f∈F

[
1

n

n∑
i=1

f(zi)− E
z∼PX ,Y

f(z)

]]
≤ 2ℜn(F)

Applied to our setting, we have

F = {z = (x, y) ℓ(h(x), y) ∈ R, h ∈ H} ⊆ X × Y → R

1

n

n∑
i=1

ℓ(h(xi), yi) =: L̂n(h)

Corollary 1.

E
z1,...,zn

iid∼PX ,Y

[
sup
h∈H

L̂n(h)− L(h)

]
≤ 2ℜn(F)

However, in practice we don’t know the true distribution PX ,Y , therefore, we formulate the empirical
Rademacher complexity:

Definition 2 (empirical Rademacher complexity).

ℜs(F) =∆ E
σ1,...,σn

[
sup
f∈F

1

n

n∑
i=1

σif(zi)

]

for S := {(xi, yi)}ni=1
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Accordingly, the relationship between the average and empirical Rademacher complexities is

ℜn(F) = E
S
ℜs(F)

Theorem 2. Suppose ∀f ∈ F , ∀z ∈ Z, 0 ≤ f(z) ≤ 1, then with probability ≥ 1− δ,

sup
f∈F

[
1

n

n∑
i=1

f(zi)− E f(z)

]
≤ 2ℜs(F) + 3

√
log(2/δ)

2n

This states that the difference between the empirical and population risks is bounded by the empir-
ical Rademacher complexity, and we can derive a corresponding generalization bound.

Proof. (1) Recall the bounded difference condition and its implication, McDiarmid’s inequality:

|g(x1, ..., xn)− g(x1, ..., xi−1, x
′
i, xi+1, ..., xn)| ≤ ci ∀x1, ..., xn, x

′
i

⇒ P (g(x1, ..., xn)− E[g(x1, ..., xn)] ≥ t) ≤ exp(− −2t2∑n
i=1 c

2
i

)

Now, define g(z1, ..., zn) =∆ supf∈F
[
1
n

∑n
i=1 f(zi)− E f(z)

]
. Notice that this definition of g satisfies

the bounded difference condition with ci = 1
n . This is because 0 ≤ f(·) ≤ 1, so changing z to z′i will

change f(·) by at most 1, and this value is then scaled by a factor of 1
n .

(2) Applying McDiarmid’s inequality to g, we find

P (g(z1, ..., zn) ≥ E
z
[g] + ϵ) ≤ exp(− 2ϵ2∑n

i=1 c
2
i

)

≤ exp(−2nϵ2)

(3) Now, by Theorem 1,

E
z1,...,zn

iid∼P
g = E

z1,...,zn
iid∼P

[
sup
f∈F

[
1

n

∑
i=1

nf(zi)− E f(z)

]]
≤ 2ℜn(F)

(4) Next, we will connect ℜn(F) to ℜs(F). Define

g̃(z1, ..., zn) = ℜs(F) =∆ E
σi

[
sup
f∈F

1

n

n∑
i=1

σif(zi)

]
g̃ also satisfies the bounded condition with ci = 1

n for the same reason as g. Thus,

P (g̃(z1, ..., zn)− E[g̃] ≥ ϵ) ≤ exp(−2nϵ2)

or, equivalently,

P (g̃(z1, ..., zn)− E[ℜn(F)] ≥ ϵ) ≤ exp(−2nϵ2)
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This shows that the difference between the average and empirical Rademacher complexities is tightly
bounded and follows from the boundedness of f .

(5) Finally, if we set exp (−2nϵ2) = δ/2, we get

g := sup
f∈F

[
1

n

n∑
i=1

f(zi)− E[f(z)]

]
≤ E[g] + ϵ (from (2), w.p. 1− δ

2 )

≤ 2ℜn(F) + ϵ (from Theorem 1)

≤ 2(ℜs(F) + ϵ) + ϵ (from (4), w.p. 1− δ
2 )

= 2ℜs(F) + 3ϵ

Thus, with probability 1− δ,

sup
f∈F

[
1

n

n∑
i=1

f(zi)− E[f(z)]

]
≤ 2ℜs(F) + 3ϵ

= 2ℜs(F) + 3

√
log(2/δ)

2n

3 Properties of ℜn(F)
Translation invariant

ℜn(F ′
c) = ℜn(F) for all c, where F ′

c := {f ′(z) = f(z) + c | f ∈ F}

Reflection invariant

ℜn(F) = ℜn(−F) where −F := {−f | f ∈ F}

4 Examples of ℜn(F)
4.1 Linear function

For some constant B > 0, let

H := {x→ (w, x) |w ∈ Rd, ∥w∥2 ∈ B},

then

ℜs(H) ≤ B

n

√√√√ n∑
i=1

∥xi∥2.

Moreover, if Ex∼P [∥x∥22] ≤ C2, where P is some distribution and C > 0 is a constant, then

ℜn(H) ≤ BC√
n
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4.2 Two-layer neural network

Consider fθ(x) := ⟨w, ϕ(µx)⟩ where w ∈ Rm and ϕ(µx) ∈ Rm×d.
For some constants Bw > 0 and Bµ > 0, let

H := {fθ | ∥w∥2 ≤ Bw, ∥µi∥2 ≤ Bµ,∀i ∈ {1, 2, . . . ,m}},

and suppose E[∥x∥2] ≤ C2, then

ℜn(H) ≤ 2BwBµC

√
m

n

For more details, please refer to (Du, Lee, 2017).

4.3 Deep neural network

Suppose that ∀i, ∥x(i)∥2 ≤ 2 and let

F̃ := {fθ : ∥Wi∥op ≤ ki, ∥WT
i ∥2,1 ≤ bi}.

Then

ℜs(F) ≤ c√
n
·

(
r∏

i=1

ki

)
·

(
r∑

i=1

b
2
3
i

k
2
3
i

) 3
2

.

For more details, please refer to (Bartlett et al., 2017).
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