Modern Topics in St	atistical Learning Theory	Spring 2023
	Lecture $3 - Feb. 10, 2023$	
Prof. Qi Lei	Scribe: Jiajing Chen, Zhengyao	Gu, Huyen Nguyen

1 Last lecture's recap

In the previous lecture, we talked about the conditions for the following inequality to hold:

w.h.p. (with high probability)
$$\geq 1 - \delta$$
, $\left| \frac{1}{n} \sum_{i=1}^{n} X_i - \mathbb{E}[x] \right| \leq \epsilon$

where ϵ depends on δ and n, i.e. $\epsilon = f_n(\delta)$.

2 Today lecture's topic

In this lecture, we will apply the results from the last lecture to analyze the difference between the population risk $L(\theta)$ and the empirical risk $\hat{L}_n(\theta)$. With $l(h_\theta(x_i), y_i)$ as the per-example loss function between the prediction function $h_\theta(x)$ with parameter θ and y, the empirical and population risk are defined as

$$\hat{L}_{n}(\theta) := \frac{1}{n} \sum_{i=1}^{n} l(h_{\theta}(x_{i}), y_{i}),$$
(1)

$$L(\theta) := \mathop{\mathbb{E}}_{x,y \sim \mathcal{P}(x,y)} l(h_{\theta}(x), y)$$
(2)

respectively.

Specifically, we will show uniform convergence of the empirical risk:

w.h.p.,
$$1 - \delta : \sup_{\theta \in \Theta} |\hat{L}_n(\theta) - \mathbf{L}(\theta)| \le \epsilon,$$
 (3)

where Θ is the set of all prediction functions.

For some examples of what the parametrized prediction function looks like: define the *linear* regression prediction function

$$h_{\theta}: x \mapsto \theta^T x, \theta \in \Theta = \mathbb{R}^d \tag{4}$$

where $\Theta = \{ \mathbf{v} \in \mathbb{R}^d \mid \|\mathbf{v}\| \le 1 \}.$

 h_{θ} can also be a two-layered Neural Network (NN):

$$h_{\theta}: x \mapsto \sum_{i=1}^{m} a_i \sigma(w_i^T x), \tag{5}$$

where $a_i \in \mathbb{R}^m$, $w_i \in \mathbb{R}^{md}$, and σ is the activation function. A popular choice for σ is the Rectified Linear Unit (ReLU):

$$\sigma(x) = \operatorname{ReLU}(x) = (x)_{+} = \begin{cases} x, & x \le 0\\ 0, & \text{otherwise} \end{cases}$$
(6)

3 Motivation

In this lecture we are interested in how the empirical risk \hat{L}_n generalizes to the population risk, i.e. we would like the magnitude of the *excess risk* $R(\hat{\theta}) = \hat{L}_n(\hat{\theta}) - L(\hat{\theta})$ to be small, where $\hat{\theta} = \underset{\theta \in \Theta}{\operatorname{argmin}} \hat{L}_n(\theta)$. We prove bounds on the size of the excess risk using **uniform convergence**.

First note that we can decompose the excess risk by the **telescoping**.

$$R(\hat{\theta}) = \underbrace{L(\hat{\theta}) - \hat{L}_n(\hat{\theta})}_{(1)} + \underbrace{\hat{L}_n(\hat{\theta}) - \hat{L}_n(\theta^*s)}_{(2)} + \underbrace{\hat{L}_n(\theta^*) - L(\theta^*)}_{(3)},\tag{7}$$

where $\theta^* = \underset{\theta \in \Theta}{\operatorname{argmin}} L(\theta)$ and $\hat{\theta} = \underset{\theta \in \Theta}{\operatorname{argmin}} \hat{L}_n(\theta)$. (1) is the excess risk with respect to the empirical risk minimizer $\hat{\theta}$, and (3) is the population risk with respect to the optimal estimator θ^* , whereas, by definition,

(2) :=
$$\hat{L}_n(\hat{\theta}) - \hat{L}_n(\theta^*) \le 0.$$
 (8)

Also note that

$$|L(\theta) - \hat{L}_n(\theta)| \le \epsilon, \forall \theta \in \Theta$$
(9)

$$\Rightarrow |L(\hat{\theta}) - \hat{L}_n(\hat{\theta})| \le \epsilon \tag{10}$$

$$\Leftrightarrow \sup_{\theta \in \Theta} |L(\theta) - \hat{L_n}(\theta)| \le \epsilon \tag{11}$$

With respect to equation 7, we then have:

$$R(\hat{\theta}) := \underbrace{L(\hat{\theta}) - \hat{L}_n(\hat{\theta})}_{\textcircled{1}} + \underbrace{\hat{L}_n(\hat{\theta}) - \hat{L}_n(\hat{\theta^*})}_{\textcircled{2}} + \underbrace{\hat{L}_n(\theta^*) - L(\theta^*)}_{\textcircled{3}}$$
(12)

$$\leq |L(\hat{\theta}) - \hat{L}_n(\hat{\theta})| + |\hat{L}_n(\theta^*) - L(\theta^*)|$$
(13)

$$\leq 2 \times \sup_{\theta \in \Theta} |L(\theta) - \hat{L}_n(\theta)| \tag{14}$$

The inequality above showed that excess risk is bounded by two times the uniform convergence gap, which admits the intuitive interpretion — "uniform convergence implies generalization".

4 Generalization Bound for Finite Hypothesis Classes

In this section, we demonstrate how one can derive generalization bounds from concentration theorems when assuming a finite hypothesis space. We stop using parameters $\theta \in \Theta$ to denote the range of prediction functions available to the optimization. Instead we use the non-parametric notation $h \in H$, where H is the hypothesis space.

Theorem 1 (Union Bound). For a series of events E_1, E_2, \ldots, E_K ,

$$\mathbb{P}r(\bigcup_{i=1}^{K} E_i) \le \sum_{k=1}^{K} \mathbb{P}r(E_i).$$
(15)

Apply the union-bound claim to $\sup_{\theta \in \Theta} |L(\theta) - \hat{L}_n(\theta)|$, we have:

$$\mathbb{P}r(|L(\theta) - \hat{L}_n(\theta)| \ge \epsilon, \forall \theta \in \Theta)$$
(16)

$$\leq \sum_{\theta \in \Theta} \mathbb{P}r(|L(\theta) - \hat{L}_n(\theta)| \geq \epsilon).$$
(17)

The next theorem is derived from the Hoeffding concentration theorem from the last lecture. It demonstrates how combining concentration theorems and union bound, one can derive generalization bounds.

Theorem 2. Suppose $H \leq \infty$, *l* is bounded in [0,1], i.e., $0 \leq l(h(x), y) \leq 1 \quad \forall h \in H, \forall x, y$. Then $\forall \delta$ such that $0 \leq \delta \leq \frac{1}{2}$, we have, w.h.p. $\geq 1 - \delta$,

$$|L(h) - \hat{L}_n(h)| \le \sqrt{\frac{\ln|H| + \ln(\frac{2}{\delta})}{2n}}$$
 (18)

Corollary 3. As a corollary, we have the up-scaling for generalization bound $|L(\hat{h}) - L(h^*)|$ as follows:

$$|L(\hat{h}) - \hat{L}_n(\hat{h})| \le \sqrt{\frac{2(\ln|H| + \ln(\frac{2}{\delta}))}{n}}$$
(19)

Proof Sketch.

- 1. Use concentration inequality to prove the bound for each fixed $h \in H$.
- 2. Use union bound across all $h \in H$.
 - (a) Fix an $\epsilon > 0$, apply Hoeffding's inequality on $l(h(x_i), y_i) \in [0, 1]$ as follows, with respect to $l(h(x_i), y_i) \in [a_i, b_i]$, that is $a_i = 0, b_i = 1$.

$$\mathbb{P}r(|\hat{L}_n(h) - L(h)| \ge \epsilon) \quad \text{(concentration inequality)} \tag{20}$$

$$\leq 2 \exp\left(-\frac{2n^2\epsilon^2}{\sum_{i=1}^n (b_i - a_i)^2}\right) \tag{21}$$

$$= 2\exp(-2n\epsilon^2). \tag{22}$$

(b) Apply union bound for each event:

$$E_h := |\hat{L}_n(h) - L(n)| \ge \epsilon \tag{23}$$

$$\mathbb{P}r(E_h) \le 2\exp(-2n\epsilon^2) \tag{24}$$

Thus, we have:

$$\mathbb{P}r(\exists h \in H, s.t. |\hat{L}_n(h) - L(h)| \ge \epsilon)$$
(25)

$$\leq \sum_{h \in H} \mathbb{P}r(E_h) \tag{26}$$

$$\leq |H| \times 2 \exp(-2n\epsilon^2)$$
 (generalization bound) (27)

Using the notation from lecture 1 we derive the specific form of $\epsilon = f_n(\delta)$ (see Section 1):

$$\delta = |H| 2 \exp(-2n\epsilon^2) \Leftrightarrow \epsilon = \sqrt{\frac{\ln|H| + \ln(\frac{2}{\delta})}{2n}}$$
(28)

5 Generalization Bound for Infinite Hypothesis Class

The Union Bound theorem can only be applied to a countable set of events E_1, E_2, \ldots . One cannot apply the union bound to broadcast the concentration bound to all parameters when the hypotheses space is infinite. In the infinite case, one can construct a finite collection of balls whose union covers the whole hypothesis space, given that the hypotheses space is bounded:

$$H = \{h_{\theta} : \theta \in \mathbb{R}^d, ||\theta||_2 \le B\}.$$
(29)

One then derive an error bound for each ball and apply union bound to pool all the error bounds into the final generalization bound.

Now, define the notion of an ϵ -cover.

Definition 4 (ϵ -cover). Let $\epsilon > 0$. An ϵ -cover of a set S with respect to a distance metric ρ is a subset $C \subseteq S$, s.t. $\forall x \in S$, $\exists x_0 \in C$ s.t. $\rho(x, x_0) \leq \epsilon$, or equivalently:

$$S \subseteq \bigcup_{x_0 \in C} Ball(x_0, \epsilon, \rho) \tag{30}$$

$$Ball(x_0, \epsilon, \rho) := \{ x : \rho(x, x_0) \le \epsilon \}$$
(31)

The following lemma establishes that for a bounded set of hypotheses, one can construct an ϵ -cover with finite cardinality.

Lemma 5 (ϵ -cover of an l_2 ball). Let $B, \epsilon > 0$ and $S = \{x \in \mathbb{R}^p \mid ||x||_2 \leq B\}$. Then there exists an ϵ -cover of S with respect to the l_2 norm with

$$|S_{\epsilon}| \le \max\left\{ \left(\frac{3B\sqrt{p}}{\epsilon}\right)^p, 1 \right\}$$
(32)

With Lemma 5, we can demonstrate how one would derive generalization bounds for infinite hypothesis classes.

Proof Sketch.

- 1. Find ϵ -cover (ϵ -net) $S\epsilon$ of H.
- 2. Prove uniform convergence over all ϵ -balls of S_{ϵ} . Similar to the previous section, we have:

$$|L(\theta_0) - \hat{L}_n(\theta_0)| \le \eta \quad \forall \theta_0 \in S_\epsilon \tag{33}$$

3. For $\theta \in \Theta$, find the closest $\theta_0 \in S_{\epsilon}$, with some Lipschitz condition of $l(h_{\theta}(x), y)$, we have:

$$|L(\theta) - L(\theta_0)| \le \eta_2, \text{ when } ||\theta - \theta_0|| \le \epsilon$$
(34)

(35)

besides,

$$|\hat{L}_n(\theta) - \hat{L}_n(\theta_0)| \le \eta_2 \tag{36}$$

Together, we again derive the generalization bound by telescoping:

$$|L(\theta) - \hat{L}_n(\theta)| \le |L(\theta) - L(\theta_0)| + |L(\theta_0) - \hat{L}_n(\theta_0)| + |\hat{L}_n(\theta_0) - \hat{L}_n(\theta)||$$
(37)

Detailed proof.

- 1. By Lemma 5 we can construct an ϵ -cover of the hypotheses space.
- 2. Fix η, ϵ For ϵ -cover, it satisfies:

$$\mathbb{P}r(|\hat{L}_n(\theta_0) - L(\theta_0)| \le \eta, \forall Ball(\theta_0, \epsilon, \rho) \in S_\epsilon) \ge 1 - 2|S_\epsilon|\exp(-2n\eta^2)$$
(38)

$$= 1 - 2\exp(\ln|S_{\epsilon}| - 2n\eta^2) \tag{39}$$

$$\geq 1 - 2\exp(p \cdot \ln(3BP/\epsilon)) - 2n\eta^2) \qquad (40)$$

Step (40) is derived by applying Equation (32).

3. $[\kappa\text{-Lipschitz}]$ Let $\kappa > 0, ||\cdot||$ be a norm on the domain D. A function $L: D \to \mathbb{R}^d$ is called $\kappa\text{-Lipschitz}$ with respect to $||\cdot||$, if $\forall \theta, \theta' \in D$, we have $L(\theta) - L(\theta')| \leq \kappa ||\theta - \theta'||$. If l is $\kappa\text{-Lipschitz}$, then we know \hat{L}_n and L are $\kappa\text{-Lipschitz}$, i.e. if $|\theta - \theta_0| \leq \epsilon$,

$$|L(\theta) - L(\theta_0)| \le \kappa \cdot |\theta - \theta_0| \le \kappa \epsilon \tag{41}$$

$$|\hat{L}_n(\theta) - \hat{L}_n(\theta_0)| \le \kappa \cdot \epsilon \tag{42}$$

Then, we have

$$|L(\theta) - \hat{L}_n(\theta)| \le |L(\theta) - L(\theta_0)| + |L(\theta_0) - \hat{L}_n(\theta_0)| + |\hat{L}_n(\theta_0) - \hat{L}_n(\theta)|$$

$$= 2\kappa \cdot \epsilon + \eta$$
(43)
(44)

$$= 2\kappa \cdot \epsilon + \eta$$
 (44)

Plug $\epsilon = \frac{\eta}{2\kappa}$ and $\eta = \sqrt{\frac{36 \cdot \ln(\kappa Bn)}{n}}$ into inequality (43) and (40), then we have ÷

$$|L(\theta) - \hat{L}_n(\theta)| \le 2\eta \tag{45}$$

and

$$\mathbb{P}r(|\hat{L}_n(\theta) - L(\theta)| \le 2\eta, \forall \theta \in \Theta) \ge 1 - 2\exp(-p).$$
(46)

Additionally, note that:

$$|\hat{L}_n(\theta) - L(\theta)| \le \mathcal{O}\left(\sqrt{\frac{p \cdot \ln(\kappa Bn)}{n}}\right)$$
(47)

for large enough n.

Е		