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1 Last lecture’s recap

In the previous lecture, we talked about the conditions for the following inequality to hold:

w.h.p. (with high probability) ≥ 1 − δ,

∣∣∣∣∣ 1n
n∑

i=1

Xi − E[x]

∣∣∣∣∣ ≤ ϵ

where ϵ depends on δ and n, i.e. ϵ = fn(δ).

2 Today lecture’s topic

In this lecture, we will apply the results from the last lecture to analyze the difference between
the population risk L(θ) and the empirical risk L̂n(θ). With l(hθ(xi), yi) as the per-example loss
function between the prediction function hθ(x) with parameter θ and y, the empirical and population
risk are defined as

L̂n(θ) :=
1

n

n∑
i=1

l(hθ(xi), yi), (1)

L(θ) := E
x,y∼P(x,y)

l(hθ(x), y) (2)

respectively.

Specifically, we will show uniform convergence of the empirical risk:

w.h.p., 1 − δ : sup
θ∈Θ

|L̂n(θ) −  L(θ)| ≤ ϵ, (3)

where Θ is the set of all prediction functions.
For some examples of what the parametrized prediction function looks like: define the linear
regression prediction function

hθ : x 7→ θTx, θ ∈ Θ = Rd (4)

where Θ = {v ∈ Rd | ∥v∥ ≤ 1}.

hθ can also be a two-layered Neural Network (NN):

hθ : x 7→
m∑
i=1

aiσ(wT
i x), (5)
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where ai ∈ Rm, wi ∈ Rmd, and σ is the activation function. A popular choice for σ is the Rectified
Linear Unit (ReLU):

σ(x) = ReLU(x) = (x)+ =

{
x, x ≤ 0

0, otherwise
(6)

3 Motivation

In this lecture we are interested in how the empirical risk L̂n generalizes to the population risk,
i.e. we would like the magnitude of the excess risk R(θ̂) = L̂n(θ̂) − L(θ̂) to be small, where
θ̂ = argmin

θ∈Θ
L̂n(θ). We prove bounds on the size of the excess risk using uniform convergence.

First note that we can decompose the excess risk by the telescoping.

R(θ̂) = L(θ̂) − L̂n(θ̂)︸ ︷︷ ︸
1○

+ L̂n(θ̂) − L̂n(θ∗s)︸ ︷︷ ︸
2○

+ L̂n(θ∗) − L(θ∗)︸ ︷︷ ︸
3○

, (7)

where θ∗ = argmin
θ∈Θ

L(θ) and θ̂ = argmin
θ∈Θ

L̂n(θ). 1○ is the excess risk with respect to the empirical

risk minimizer θ̂, and 3○ is the population risk with respect to the optimal estimator θ∗, whereas,
by definition,

2○ := L̂n(θ̂) − L̂n(θ∗) ≤ 0. (8)

Also note that

|L(θ) − L̂n(θ)| ≤ ϵ, ∀θ ∈ Θ (9)

⇒ |L(θ̂) − L̂n(θ̂)| ≤ ϵ (10)

⇔ sup
θ∈Θ

|L(θ) − L̂n(θ)| ≤ ϵ (11)

With respect to equation 7, we then have:

R(θ̂) := L(θ̂) − L̂n(θ̂)︸ ︷︷ ︸
1○

+ L̂n(θ̂) − L̂n(θ̂∗)︸ ︷︷ ︸
2○

+ L̂n(θ∗) − L(θ∗)︸ ︷︷ ︸
3○

(12)

≤ |L(θ̂) − L̂n(θ̂)| + |L̂n(θ∗) − L(θ∗)| (13)

≤ 2 × sup
θ∈Θ

|L(θ) − L̂n(θ)| (14)

The inequality above showed that excess risk is bounded by two times the uniform convergence gap,
which admits the intuitive interpretion — “uniform convergence implies generalization”.
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4 Generalization Bound for Finite Hypothesis Classes

In this section, we demonstrate how one can derive generalization bounds from concentration
theorems when assuming a finite hypothesis space. We stop using parameters θ ∈ Θ to denote
the range of prediction functions available to the optimization. Instead we use the non-parametric
notation h ∈ H, where H is the hypothesis space.

Theorem 1 (Union Bound). For a series of events E1, E2, . . . , EK ,

Pr(

K⋃
i=1

Ei) ≤
K∑
k=1

Pr(Ei). (15)

Apply the union-bound claim to sup
θ∈Θ

|L(θ) − L̂n(θ)|, we have:

Pr(|L(θ) − L̂n(θ)| ≥ ϵ, ∀θ ∈ Θ) (16)

≤
∑
θ∈Θ

Pr(|L(θ) − L̂n(θ)| ≥ ϵ). (17)

The next theorem is derived from the Hoeffding concentration theorem from the last lecture. It
demonstrates how combining concentration theorems and union bound, one can derive generalization
bounds.

Theorem 2. Suppose H ≤ ∞, l is bounded in [0,1], i.e., 0 ≤ l(h(x), y) ≤ 1 ∀h ∈ H,∀x, y.
Then ∀δ such that 0 ≤ δ ≤ 1

2 , we have, w.h.p. ≥ 1 − δ,

|L(h) − L̂n(h)| ≤

√
ln |H| + ln(2δ )

2n
(18)

Corollary 3. As a corollary, we have the up-scaling for generalization bound |L(ĥ) − L(h∗)| as
follows:

|L(ĥ) − L̂n(ĥ)| ≤

√
2(ln|H| + ln(2δ ))

n
(19)

Proof Sketch.

1. Use concentration inequality to prove the bound for each fixed h ∈ H.

2. Use union bound across all h ∈ H.

(a) Fix an ϵ > 0, apply Hoeffding’s inequality on l(h(xi), yi) ∈ [0, 1] as follows, with respect
to l(h(xi), yi) ∈ [ai, bi], that is ai = 0, bi = 1.

Pr(|L̂n(h) − L(h)| ≥ ϵ) (concentration inequality) (20)

≤ 2 exp

(
− 2n2ϵ2∑n

i=1(bi − ai)2

)
(21)

= 2 exp(−2nϵ2). (22)
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(b) Apply union bound for each event:

Eh := |L̂n(h) − L(n)| ≥ ϵ (23)

Pr(Eh) ≤ 2 exp(−2nϵ2) (24)

Thus, we have:

Pr(∃h ∈ H, s.t.|L̂n(h) − L(h)| ≥ ϵ) (25)

≤
∑
h∈H

Pr(Eh) (26)

≤ |H| × 2 exp(−2nϵ2) (generalization bound) (27)

Using the notation from lecture 1 we derive the specific form of ϵ = fn(δ) (see Section 1):

δ = |H|2 exp(−2nϵ2) ⇔ ϵ =

√
ln |H| + ln(2δ )

2n
(28)

5 Generalization Bound for Infinite Hypothesis Class

The Union Bound theorem can only be applied to a countable set of events E1, E2, . . . . One cannot
apply the union bound to broadcast the concentration bound to all parameters when the hypotheses
space is infinite. In the infinite case, one can construct a finite collection of balls whose union covers
the whole hypothesis space, given that the hypotheses space is bounded:

H = {hθ : θ ∈ Rd, ||θ||2 ≤ B}. (29)

One then derive an error bound for each ball and apply union bound to pool all the error bounds
into the final generalization bound.

Now, define the notion of an ϵ-cover.

Definition 4 (ϵ-cover). Let ϵ > 0. An ϵ-cover of a set S with respect to a distance metric ρ is a
subset C ⊆ S, s.t. ∀x ∈ S, ∃x0 ∈ C s.t. ρ(x, x0) ≤ ϵ, or equivalently:

S ⊆
⋃

x0∈C
Ball(x0, ϵ, ρ) (30)

Ball(x0, ϵ, ρ) := {x : ρ(x, x0) ≤ ϵ} (31)

The following lemma establishes that for a bounded set of hypotheses, one can construct an ϵ-cover
with finite cardinality.

Lemma 5 (ϵ-cover of an l2 ball). Let B, ϵ > 0 and S = {x ∈ Rp | ||x||2 ≤ B}.
Then there exists an ϵ-cover of S with respect to the l2 norm with

|Sϵ| ≤ max

{(
3B

√
p

ϵ

)p

, 1

}
(32)
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With Lemma 5, we can demonstrate how one would derive generalization bounds for infinite
hypothesis classes.

Proof Sketch.

1. Find ϵ-cover (ϵ-net) Sϵ of H.

2. Prove uniform convergence over all ϵ-balls of Sϵ.
Similar to the previous section, we have:

|L(θ0) − L̂n(θ0)| ≤ η ∀θ0 ∈ Sϵ (33)

3. For θ ∈ Θ, find the closest θ0 ∈ Sϵ, with some Lipschitz condition of l(hθ(x), y), we have:

|L(θ) − L(θ0)| ≤ η2, when ||θ − θ0|| ≤ ϵ (34)

(35)

besides,

|L̂n(θ) − L̂n(θ0)| ≤ η2 (36)

Together, we again derive the generalization bound by telescoping:

|L(θ) − L̂n(θ)| ≤|L(θ) − L(θ0)| + |L(θ0) − L̂n(θ0)| + |L̂n(θ0) − L̂n(θ)|| (37)

Detailed proof.

1. By Lemma 5 we can construct an ϵ-cover of the hypotheses space.

2. Fix η, ϵ For ϵ-cover, it satisfies:

Pr(|L̂n(θ0) − L(θ0)| ≤ η,∀Ball(θ0, ϵ, ρ) ∈ Sϵ) ≥ 1 − 2|Sϵ| exp(−2nη2) (38)

= 1 − 2 exp(ln |Sϵ| − 2nη2) (39)

≥ 1 − 2 exp(p · ln(3BP/ϵ)) − 2nη2) (40)

Step (40) is derived by applying Equation (32).

3. [κ-Lipschitz] Let κ > 0, || · || be a norm on the domain D. A function L : D → Rd is called
κ-Lipschitz with respect to || · ||, if ∀θ, θ′ ∈ D, we have L(θ) − L(θ′)| ≤ κ||θ − θ′||.
If l is κ-Lipschitz, then we know L̂n and L are κ-Lipschitz, i.e. if |θ − θ0| ≤ ϵ,

|L(θ) − L(θ0)| ≤ κ · |θ − θ0| ≤ κϵ (41)

|L̂n(θ) − L̂n(θ0)| ≤ κ · ϵ (42)

5



Then, we have

|L(θ) − L̂n(θ)| ≤ |L(θ) − L(θ0)| + |L(θ0) − L̂n(θ0)| + |L̂n(θ0) − L̂n(θ)| (43)

= 2κ · ϵ + η (44)

Plug ϵ = η
2κ and η =

√
36·ln(κBn)

n into inequality (43) and (40), then we have

|L(θ) − L̂n(θ)| ≤ 2η (45)

and

Pr(|L̂n(θ) − L(θ)| ≤ 2η,∀θ ∈ Θ) ≥ 1 − 2 exp(−p). (46)

Additionally, note that:

|L̂n(θ) − L(θ)| ≤ O

(√
p · ln(κBn)

n

)
(47)

for large enough n.
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