
Modern Topics on Statistical Learning II Spring 23

Lecture 2 — January 31, 2023

Prof. Qi Lei Scribe: Daiyan Li, Yitao Long, Andrew Zhang

1 Big-O Notation

Definition 1. If there exists positive constants c, x0, s.t. f(x) ≤ cg(x) for all x ≥ x0, then
f(x) = O(g(x)). In other words,

lim sup
x→∞

|f(x)|
g(x)

<∞

More generally, one considers

lim sup
x→a

|f(x)|
g(x)

<∞

and says f(x) = O(g(x)) as x→ a.
If f(x) = O(g(x)) and g(x) = O(f(x)), then we write f(x) = Θ(g(x)) (this notation is symmetric).

Another useful notation is f(x) = o(g(x)) as x→ a if

lim
x→a

f(x)

g(x)
= 0

2 Motivation

Let (x1, y1), . . . , (xn, yn) be i.i.d random variables with xi ∈ Rp and yi ∈ R. We call the collection
{fθ}θ∈Θ⊂Rk a family of parametric functions where fθ : Rp → R. Define also a loss function
l : R× R → R+. We are interested in

Definition 2. The mean loss or population risk of a hypothesis fθ is defined as

R(θ) := E
(x,y)∼PX,Y

l(fθ(x), y)

However, the joint law µ is unknown, and we only have access to

Definition 3. The empirical risk of a hypothesis fθ is defined as

R̂(θ) :=
1

n

n∑
i=1

l(fθ(xi), yi)

Since ER is intractable, we would like to know how many data size n and what probability to make
us believe that ˆR(θ) → R(θ).
Hence it is very natural to ask for bounds on quantities of the form

P(|Z − EZ| ≥ t) ≤ f(t)
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where Z ∈ L1 (actually, we will need far stronger assumptions on Z) and f is non-decreasing in
t. Let us illustrate this idea on the king of all distributions, the standard gaussian. We will need
Markov’s inequality.

Theorem 4. Let X ≥ 0 and have finite expectation. Then for all t > 0,

P(X ≥ t) ≤ EX
t

Proof.

EX =

∫
1[0,t)(X)X dP+

∫
1[t,∞)(X)X dP ≥ tP(X ≥ t)

Remark 5. As an immediate corollary, one has Chebyshev’s inequality. For X ∈ L2 with finite
expectation and variance, and t > 0, one has P (|X − EX| ≥ t) ≤ t−2Var(X).

Now let Z ∼ N (0, 1). We will bound the tail probability of Z using the standard technique known
as the Chernoff bound. For a fixed t ≥ 0 and all λ > 0, one has

P(Z ≥ t) = P(λZ ≥ λt) = P(eλZ ≥ eλt) ≤ inf
λ>0

E eλZ

eλt
= inf

λ>0
exp(λ2/2− λt) = e−t

2/2 (1)

By symmetry,
P(|Z| ≥ t) ≤ 2 exp(−t2/2)

This shows the gaussian exhibits tails with quadratic exponential decay, and it is natural to ask if
any other distributions have this property.

3 Concentration Inequalities

To get the bound in equation (1), we used that the moment generating function of Z is λ 7→ exp(λ2/2).
Observe that for an arbitrary random variable X, as long as

E eλX ≤ eλ
2/2 ∀λ ∈ R

then the proof still goes through and we may conclude X has tails with quadratic exponential decay.

Remark 6. The observant reader will notice that Z is centered, but we never said X was centered.
Actually, one can show that if X exhibits the specified condition, then X is centered (exercise).

This motivates the following definition.

Definition 7. A random variable X is σ sub-gaussian if

E eλ(X−EX) ≤ eσ
2λ2/2, ∀λ ∈ R (2)

Remark 8. (2) requires the moments of X to be all finite, and the reason is

E[eλx] = E[
∞∑
k=0

(λx)k

k!
] =

∞∑
k=0

λk

k!
E[xk]

where we assume EX = 0 and use tylor expansion.
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Using the Chernoff strategy, we immediately have tail bound for sub-Gaussian random variables.

Theorem 9. If X is σ sub-gaussian, then for all t > 0, we have

P(|X − EX| ≥ t) ≤ 2 exp(−t2/(2σ2)) =: ψ(t)

Remark 10. It is easy to show that the standard Gaussian tail satisfies

P(Z ≥ t) ∼
t→∞

1

t

1√
2π
e−t

2/(2σ2) =: φ(t)

Hence it is natural to ask whether the tail bound for sub-gaussians given in Theorem 9 is too loose
as φ(t) = o(ψ(t)). Surprisingly, the answer is no in the following sense. One can show that if
E eλX ≤ exp(λ2σ2/2) for all real λ, then for some σ̃2 and c > 0, one has

P(|X| ≥ t) ≤ cP(|Z| ≥ t), Z ∼ N (0, σ̃2)

Remark 11. The sub-gaussian quality is much stronger than the existence of all moments (the
latter hypothesis is surprisingly rather useless. See Bilingsley’s Probability and Measure section on
the method of moments.) In fact, being sub-gaussian with parameter unity is equivalent to requiring
that the moments decay no slower than a standard Gaussian:

E |X|p = O(pp/2)

Note that if X1 and X2 are independent and mean zero with sub-gaussian parameters σ1, σ2, then
it is immediate that the convolution satisfies

E eλ(X1+X2) ≤ exp(λ2(σ21 + σ22)/2)

hence X1 + X2 follows
√
σ21 + σ22 sub-gaussian. (In fact the sub-gaussian property is preserved

even under dependent sums, but we leave this as an exercise to the reader. Hint: conditional
Cauchy-Schwartz and Jensen will be helpful.) Using this observation, we are immediately led to
Hoeffding’s inequality.

Theorem 12. Let X1, . . . , Xn be independent with sub-gaussian parameters σ1, . . . , σn. Then

P
[∣∣∣∑Xi − EXi

∣∣∣ ≥ t
]
≤ 2 exp

(
−t2

2
∑n

i=1 σ
2
i

)
In particular, if the Xi are compactly supported on [ai, bi], then one has

P
[∣∣∣∑Xi − EXi

∣∣∣ ≥ t
]
≤ 2 exp

(
−2t2∑n

i=1(bi − ai)2

)

That Xi compactly supported on [ai, bi] has sub-gaussian paramter (b− a)/2 is homework.

Remark 13. As noted before, the sub-gaussian property is preserved even under dependent sums.
Hence once may state a Hoeffding-type result without the random sample assumption.

We also conclude the concentration inequality in functions of random variables. To set the stage,
we need a definition.
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Definition 14. A function f : Rn → R is said to satisfy the bounded differences inequality with
parameters c1, . . . , cn if ∣∣∣f(x)− f(x\i)

∣∣∣ ≤ ci

where x\i has arbitrary ith coordinate and jth coordinate given by xj for i ̸= j.

The last result is known as McDiarmid’s Inequality or also the Azuma-Hoeffding Inequality.

Theorem 15. Let f : Rn → R satisfy the bounded differences inequality with parameters c1, . . . , cn
and X1, . . . , Xn be i.i.d random variables. Then

P(|f(X1, . . . , Xn)− E f(X1, . . . , Xn)| ≥ t) ≤ 2 exp

(
−t2

2
∑n

i=1 c
2
i

)

McDiarmid’s Inequality looks very similar to Hoeffding’s Inequality, and Hoeffding’s Inequality for
compactly supported convolutions can in fact be proved as a corollary to McDiarmid’s inequality.

4 Appendix: Proof of McDiarmid’s Inequality

To prove McDiarmid’s Inequality, we will need conditional expectation and martingales.

Definition 16. Let (Ω,F0,P) be a probability space and X ∈ F0 satisfy E |X| <∞. Given a sub
σ-field F ⊂ F0, the conditional expectation of X given F is any random variable Y satisfying

1. Y ∈ F .

2. For all B ∈ F , ∫
B
X dP =

∫
B
Y dP

Such a random variable is denoted by E(X | F). Existence of conditional expectation is given by
the Radon-Nikodym theorem, but not uniqueness. In general, there are many random variables
satisfying the above two properties, say Y and Z, but we do have Y = Z almost surely. Hence to
be formal, one would say E(X | F) is a version of the conditional expectation.

Some very useful properties are (note all (in)equalities here hold almost surely):

1. EE(X | F) = EX. This is called law of iterated expectation.

2. If Y ∈ F , then E(XY | F) = Y E(X | F). This is called the take out what you know property.

3. If F ⊂ G, then E(E(X | G) | F) = E(X | F), as well as E(E(X | F) | G) = E(X | F). This is
called the smaller σ-algebra always wins property, or sometimes the tower property.

4. Let E |f(X,Y | <∞. Suppose Y ∈ F . Then E(f(X,Y ) | F) = φ(Y ) where φ : y 7→ E(f(X, y)).
This has no name, but is nevertheless standard.
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5. Let X,Y ∈ L1 and a, b ∈ R. Then

E(aX + bY | F) = aE(X | F) + bE(Y | F)

This is called linearity of conditional expectation.

6. Let X,Y ∈ L1 with X ≤ Y almost surely. Then E(X | F) ≤ E(Y | F). This is called
monotonicity of conditional expectation.

7. Let φ be convex with E |φ(X)| < ∞. Then E(φ(X) | F) ≥ φ(E(X | F)). This is called
conditional Jensen’s inequality.

We will use all of these in what follows.

Definition 17. Let (Fn)n≥0 be a sequence of σ-algebras. (Fn)n is a filtration if F0 ⊂ F1 ⊂ . . . .
We say the sequence (Xn)n is adapted to the filtration Fn if Xn ∈ Fn for all n. If in addition

1. E |Xn| <∞ for all n.

2. E(Xn+1 | Fn) = Xn for all n.

then we say (Xn)n is a (Fn)n-martingale.

We are now ready to begin proving McDiarmid’s inequality. Let f : Rn → R be a map satisfying
E |f(X1, . . . , Xn)| <∞. Put Fk = σ(X1, . . . , Xk). Define the sequence Yk := E(f(X1, . . . , Xn) | Fk)
and Y0 = E(f(X1, . . . , Xn)). Then

f(X1, . . . , Xn)− E f(X1, . . . , Xn) =

n∑
i=1

Yn − Yn−1︸ ︷︷ ︸
=:Dn

=

n∑
i=1

Dn (3)

We claim Yk is a Fk martingale.

Proof. We first need to check Yk ∈ Fk. Of course Yk ∈ Fk. Now we check finite expectation

E |Yk| = E |E(f(X1, . . . , Xn) | Fk)| ≤ EE(|f(X1, . . . , Xn)| | Fk) = E |f(X1, . . . , Xn)| <∞

Finally check the so-called fair game property.

E(Yk+1 | Fk) = E(E(f(X1, . . . , Xn) | Fk+1) | Fk) = E(f(X1, . . . , Xn) | Fk) = Yk

The sequence Dn = Yn − Yn−1 in equation (3) is known as a martingale difference sequence and
Yn = Y0 +

∑n
i=1Di. Three important facts about the decomposition Dn are

1. Dk is adapted to Fk or Dk is Fk measurable for each k.

2. E |Dk| <∞ for all k.

3. E(Dk+1 | Fk) = 0.
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Proof. To prove Dk ∈ Fk, recall Dk = Yk − Yk−1 and Yk ∈ Fk, Yk−1 ∈ Fk−1 ⊂ Fk.

To prove Dk ∈ L1,

E |Dk| = E |Yk − Yk−1| ≤ E |Yk|+ E |Yk−1| <∞

Finally,

E(Dk+1 | Fk) = E(Yk+1 − Yk | Fk) = E(Yk+1 | Fk)− E(Yk | Fk) = Yk − Yk = 0

The following result is called Azuma-Hoeffding’s inequality.

Theorem 18. Let Yn be a Fn martingale. Suppose the martingale differences Dn = Yn − Yn−1 are
bounded almost surely, that is, there exists a sequence cn such that P(|Dn| ≤ cn) = 1. Then

P(|Yn − Y0| ≥ t) ≤ 2 exp

(
−t2

2
∑n

j=1 c
2
j

)

Proof. Just about every result comes from the Chernoff strategy, including this one.

P(Yn − Y0 ≥ t) ≤ inf
λ>0

e−λt E eλ(Yn−Y0)

So we need to bound E exp(λ(Yn − Y0)). We have

E(exp(λ(Yn − Y0)) | Fn−1) = eλ(Yn−1−Y0) E(eλDn | Fn−1)

Now, |Dn| ≤ cn almost surely, and thus E(eλDn | Fn−1) ≤ eλ
2c2n/2. This can be proven using regular

conditional distributions. Hence

E exp(λ(Yn − Y0)) ≤ eλ
2c2n/2 E eλ(Yn−1−Y0)

Induction shows
E exp(λ(Yn − Y0)) ≤ eλ

2(
∑n

i=1 c
2
i )/2

Hence

P(Yn − Y0 ≥ t) ≤ exp

(
−t2

2
∑n

i=1 c
2
i

)
Symmetry and union bound shows

P(|Yn − Y0| ≥ t) ≤ 2 exp

(
−t2

2
∑n

i=1 c
2
i

)

Finally, we have McDiarmid’s Inequality.

Theorem 19. Let X = (X1, . . . , Xn) with X1, . . . , Xn independent. Suppose E |f(X)| < ∞ and
that f satisfies the bounded differences inequality with parameters c1, . . . , cn. Then

P(|f(X)− E f(X)| ≥ t) ≤ 2 exp

(
−t2

2
∑n

i=1 c
2
i

)
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Proof. The strategy is clear. Put Fk = σ(X1, . . . , Xk). Define Yk = E(f(X) | Fk) for 1 ≤ k ≤ n and
Y0 = E f(X). Set Dk = Yk − Yk−1 for 1 ≤ k ≤ n. We need to show |Dk| ≤ ck almost surely, and
then apply Azuma-Hoeffding to conclude.

We have

Dk = Yk − Yk−1

= E(f(X) | Fk)− E(f(X) | Fk−1)

= E(f(X1, . . . , Xk−1, Xk, Xk+1, . . . , Xn) | Fk)︸ ︷︷ ︸
=:φ(X1,...,Xk)

−E(f(X1, . . . , Xk−1, Xk, Xk+1, . . . , Xn) | Fk−1)︸ ︷︷ ︸
=:ψ(X1,...,Xk−1)

where φ(x1, . . . , xk) = E f(x1, . . . , xk, Xk+1, . . . , Xn) and ψ(x1, . . . , xk−1) = E f(x1, . . . , xk−1, Xk, . . . , Xn).
Now,

|φ− ψ| ≤ E |f(x1, . . . , xk−1, xk, Xk+1, . . . , Xn)− f(x1, . . . , xk−1, Xk, Xk+1, . . . , Xn)|
≤ ck

as desired.

Remark 20. The notation |φ− ψ| is sloppy, but the meaning should be clear in the context of
what we are trying to do, i.e. bound Dk.

Remark 21. Note the following is not correct.

sup |φ− ψ| ≤ E sup |f(x1, . . . , xk−1, xk, Xk+1, . . . , Xn)− f(x1, . . . , xk−1, Xk, Xk+1, . . . , Xn)|
≤ ck

It is not clear that the quantity inside the expectation is even measurable.
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