
ifpdf[2019/10/25 v3.4 ifpdf legacy package. Use iftex instead.] iftex
Modern Topics on Statistical Learning Theory Spring 2023

Lecture 13 — Transformer

Prof. Qi Lei Scribe: Seok Hoan Choi, Lev Paciorkowski, Miao Zhang

1 Announcements

• Please fill out course evaluations as soon as possible.

• Project final score submission due on Apr 28. Project final report due on May 5.

2 Introduction

Images can be considered as static information. However, for NLP tasks, it becomes important
to consider the ordering of sentences. Accordingly, we need different architectures to model this
sequential information.

Types of Problems:

1. ‘one-to-one’: Inputs and outputs are of fixed dimension. Many of the classic image-related
tasks fall into this category.

2. ‘many-to-one’: Arbitrary input dimension, but fixed output dimension. Example: sentiment
analysis of text.

3. ‘many-to-many’: Inputs and outputs are both of arbitrary dimension. Example: machine
translation.

4. ‘one-to-many’: Fixed input dimension, but arbitrary output dimension. Example: image
captioning.

This lecture will focus on the architectures needed to work on problem types 2-4.

3 Recurrent Neural Network (RNN)

RNNs are specifically designed for many-to-many or many-to-one type problems. Supposing we
have our input as:

x1, x2, ..., xT

Where each xi represents a token. For example, for the phrase ‘she is eating an apple’, we could
have x1 = ‘she’; x2 = ‘is’; x3 = ‘eating’; x4 = ‘an’; x5 = ‘apple’.

1



The hidden state of an RNN at index t is then defined as:

ht = fW (ht−1, xt)

Where xt is the input, ht−1 is the previous hidden state, and the function fW is the same for each
hidden state. As an example, we could have the following functional form for an RNN:

ht = tanh(Whhht−1 +Wxhxt)

Then the predictions are made as yt = Whyht.

RNNs have demonstrated their utility in a variety of applications, although there is still a potential
problem due to gradient exploding and vanishing. In particular, the vanishing gradient problem is
harder to solve here. Exploding gradients can be adequately solved by gradient clipping.

The long short-term memory (LSTM) architecture was developed as an improvement on RNNs,
with the intention to mitigate the vanishing gradient problem. The key addition of an LSTM is the
so-called ‘forget gate’. This has successfully reduced the gradient exploding/vanishing problems,
but has also introduced another problem known as ‘catastrophic forgetting’. For example, in a long
sample of text, the model might forget context information from the beginning, and this could lead
to worse output.

An additional problem is that these architectures can only model dependency on previous words.
This can be unsuitable for text completion tasks. For example, if the model sees ‘she is ’,
its output y3 might be ‘happy’, even though the full sentence might finish ‘eating an apple’. As
discussed in the following section, bidirectional neural networks attempt to solve this issue.

4 Bidirectional Recurrent Neural Network

The architecture of a bidirectional RNN is depicted below:

2



The key change is that there are two sets of hidden states, each going in opposite directions. For
each index, the two hidden states are concatenated together and combined with a final weight matrix
to generate predictions. This type of architecture can reduce the problem of the model depending
only on previous words, but it does not solve catastrophic forgetting. Architectures discussed in the
following sections are intended to remediate this last problem.

5 Attention/Self-attention: Motivation

If the input dense is arbitrarily long, then the previous architecture would be not effective. For
instance, for the Machine Translation task, the previous many-one architectures only have 1-fixed
dimension output has severe limitations on this machine translation task. In order to address this
limitation, let’s discuss encoder- decoder seq to seq model.

5.1 Encoder-decoder seq to seq model

In this seq-seq architecture, the encoder part compresses the information to something machine
friendly format in contextualized encoded vector. For instance, the input sentence would be just get
condensed into a vector, which represents the meaning and the story to be preserved for the later
part to translate. After transforming this meaning and information into a form of representation(a
vector in this case), the decoder network retrieves information from the context vector by unrolling
the information into different languages. For example, “She is eating an apple” (from the example
figure above) is translated into Chinese. In general, this architecture takes encoded information as
its input, transforms it to a compressed representation, and decodes the compressed representation
into different languages.

However, it is very clear to us that the depence level between the first word from the english sentence
“She” and the last word from the translated sentence is much weaker than other words. Indeed, it is
not clear which of the words within the sentences are semantically closer to other words.

3



Figure 1: Machine Translation: Seq to Vec to Seq. Starting with the sequence of green shown in
this figure, we compress all the information into the final ht shown in purple above. We denote this
purple circle as “context” vector. The decoder network untangles this context vector into Chinese

The motivation of the attention/self-attention is not just to memorize the long-source information,
but also to avoid weaken relationship structure between early words in input sentencs. Thus, in
attention, we train the weight matrix in order to address the semantic relationship between all the
pairs in the input and output sentences. Utilizing this method, we can compute the importance of
every single words within in the input sentences, which avoids the vanishing infomation for early
words previosly.

5.2 Concept of Attention Mechanism

Consider a set of input x at time t such that

{x}ti=1,...,t = {x1, x2, ..., xt}

where each xi is the n-dimension input vector. Through the encoder layers, we would have the
hidden representation hi from given input vector xi. With the attention score ai, the context vector
ci is the linear combination of the ai and hi:

ci =
T∑

j=1

aijhj

With the context vector ci, we utilize decoder modules for the machine translation task and softmax
for regression problem; the remaining decision for the later module purely depends on the type of
task we choose to do. Again this attention mechanism enables to capture the information in various
positions, not only in information nearby each token of words.

5.3 Computing of Attention Matrix

An attention matrix A ∈ RT×dv is defined as follows:

4



Figure 2: Machine Translation: Attention

A(Q,K, V ) = softmax

(
Q ·KT

√
dk

)
· V (1)

where Q,K, V denote as Query matrix, Key matrix, and Value matrix, repectively.

Also, each Q,K, V are defined as follows:

Q = X ·W q ∈ RT×dk

K = X ·W k ∈ RT×dk

V = X ·W v ∈ RT×dv

where W q,W k ∈ Rd×dk ,W v ∈ Rd×dk , and the input matrix X ∈ RT×d where T is the length of the
sequence, and d is the dimension for the embedding.

Each weight matrix describes the connection relationship of the input weight matrix. Notice that V
has a different dimension V ∈ RT×dv where dv is the embedding dimension for the value matrix.

The name for each matrix might be arbitrary, but they are used to find the relationship between
each word in the input matrix X. For example, suppose we want to find the meaning of the word
“diffeomorphism” from a dictionary book. In this case, the word “diffeomorphism” is the query, and
we check the query against all the words in the dictionary book–this is the key. The attention
mechanism computes how aligned the query is against the keys by utilizing dot product between Q
and KT ; the value for the dot product indicates the level of similarity. With the softmax function,
we can represent it in the probabilistic density form, which is shown the softmax term from the
equation (1). The attention matrix A is then simply the weighted sum of value vectors.

We also denote aij as the individual coordinate of the matrix A at ith row and jth column:

aij = softmax

(
qi · kj√

dk

)
=

exp(qi · kj)√
dk ·

∑
r∈Si

exp(qi · kr)

5



Figure 3: Attention scores from Bidirectional RNN

where qi is the ith column vector of the Q which is the vector multiplication between ith row of
input matrix X and jth column of the weight matrix W q. Si is the set of the import positions of
the key positions for ith query to attend to.

6 Attention is all you need

What is introduced above is the self-attention mechanism. In the original paper in which attention
mechanism is introduced [2], “Attention is all you need”, attention is a broader concept, which could
be the case that query is from the input but key is from other sets of reference points. However,
self-attention is now more used in different architectures.

The Attention(Q,K, V ) defined above is a single attention. A multi-head attention can be used to
make the model more expressive, defined as:

MultiheadAttention(Xq, Xk, Xv) = [head1, ..., headh]w
o. (2)

, the concatenation of different heads times the output weight matrix, and

headi = Attention(xqW
q
i , xkW

k
i , xvw

v
i ). (3)

The multi-head attention architecture can be seen in Figure 4. For every round, the query, key, value
pass the “Linear” module which is to time with weight wi. The “scale” in “Scaled Dot-Product
Attention”” indicates the softmax operation we have defined in attention matrix. Then, the h

6



Figure 4: Multi-Head Attention [2].

different heads are concatenated and times with wo.

The reason why the multi-head attention is expressive is that there are different weights for different
heads, thus can approximate a broader class of functions. It is a key part in Transformer.

Figure 5: The transformer model architecture [2].

6.1 Transformer

The original transformer is designed for machine translation task so it is in encoder-decoder archi-
tecture. Later there are variations including encoder-only BERT, decoder-only GPT.

The transformer model can be seen in Figure 5. The input will firstly be mapped to an embedding
space using a pre-trained matrix. Then it goes through multi-head attention modules (6 commonly)

7



with a feed-forward architecture. Then the output layer function depends on the target task, for
example, probabilities for classification tasks and decoder for machine translation tasks.

The skip-connection in the model is important to train stable deep networks, which originally comes
from the residual learning method in ResNet models.

The use of position encoder. The input positions in the current attention modules do not affect
results, in other words, the attention is permutation-invariant.

headi = softmax

(
QkT√
dk

)
v = softmax

(
Xqw

q(Xkw
k)T√

dk

)
Xvw

v. (4)

Here if the ordering of Xk and Xv change together, it will not change the result.

To hand-code the position information, we use an encoder matrix:

P ∈ RT×d (5)

, where T is the sequence length, and d is the same as the embedding dimension of each word. It is
additive to the original embedding X ∈ RT×d. The resulting new embedding has ording information.
P can be learnt in the context for specific task or it can be prescribed, for example, sinusoidal
positional encoding.

8



References

[1] Thore Husfeldt. “Single run of Karger’s Mincut algorithm.” Wikipedia, N.p., 12 September
2012. Web. https://fr.wikipedia.org/wiki/Algorithme_de_Karger#/media/File:Single_

run_of_Karger%E2%80%99s_Mincut_algorithm.svg

[2] Vaswani, Ashish, et al. “Attention is all you need.” Advances in neural information processing
systems 30 (2017).

9


