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1 Self Supervised Learning

Self-supervised learning is an emerging paradigm in the field of machine learning, particularly deep
learning, that focuses on learning useful representations of data by leveraging its inherent structure.
The primary goal of self-supervised learning is to enable the learning process to occur without
relying on a large amount of labeled data, as is required in supervised learning, by using the input
data itself as a form of supervision.

2 Recap from the Previous Lecture

In the previous lecture, we discussed various topics related to self-supervised learning, including:

1. Data augmentation: A technique used to create new training examples by applying transfor-
mations to existing data, thus increasing the diversity and size of the dataset.

2. Semi-supervised learning: A learning approach that combines a small amount of labeled data
with a large amount of unlabeled data during training.

3. Pretraining and downstream tasks: The process of training a model on a large dataset (usually
unsupervised or self-supervised) and then fine-tuning it on a smaller, task-specific labeled
dataset.

3 Types of Self-Supervised Learning

There are two main types of self-supervised learning:

3.1 Type I: Reconstruction-based SSL

• Pretext tasks involve reconstructing or predicting parts of the input data.

• Downstream tasks leverage the learned representations for specific supervised tasks.

Examples:

• Context Encoder (Pathak et al. [2016]): Predicts missing parts of an image.

• Masked Autoencoder (He et al. [2022]): Reconstructs partially masked inputs.
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Figure 1: Type I: Reconstruction-based SSL. The figure shows the process of using X1 for the
pretext task X2, and then using the learned weights W for the downstream task Y .

• Colorization (Zhang et al. [2016]): Predicts color information for grayscale images.

• BERT (Devlin et al. [2018]) and ChatGPT: Predict masked words or next words in a sentence.

3.1.1 Randomly Masked Example

A randomly masked example would be: ”A quick [MASK] fox jumps over the [MASK] dog.”

The model’s prediction would be: ”A quick brown fox jumps over the lazy dog.”

3.1.2 Setup: Reconstruction-based SSL

In the reconstruction-based SSL setup, the goal is to learn useful representations from data by
solving pretext tasks that involve reconstructing or predicting parts of the input data. These learned
representations are then used in downstream tasks for specific supervised learning problems shown
in Figure 1. The process involved:

• Label Y with k classes.

• Unmasked image X1 and masked image X2.

• Key intuition: Pretext tasks should help us reduce irrelevant features/forget information that
is not necessary to predict Y .

3.1.3 Ideal Scenario

In the ideal scenario, the learned representations capture the relevant features of the data that
help in predicting the downstream task labels. This can be formulated as conditional independence
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between the unmasked input X1 and the masked input X2 given the label Y : X1 ⊥ X2|Y . The
process involved:

• Label Y with k classes.

• Unmasked image X1 and masked image X2.

• Ideal scenario: X1 → Y → X2 ⇔ X1 ⊥ X2|Y

3.1.4 A Thought Experiment

• Conditional independence: X1 ⊥ X2|Y

• Image colorization for photos of desert, forest, and sea: The pretext task involves predicting
color information for grayscale images of different environments such as deserts, forests, and
seas shown in Figure 2

Figure 2: Image Colorization

• Image inpainting: The pretext task involves predicting missing or occluded parts of an image
to reconstruct the entire image shown in Figure 3.

Figure 3: Image Painting
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3.2 Type II: Similarity-based SSL

• Enforces similar representations for different views or augmentations of the same data point.

• Maximizes the agreement between representations of different views or augmentations.

Figure 4: Type II: Similarity-based SSL

Examples:

• SimSiam (Chen and He [2021]): Maximizes similarity between two augmented views of the
same image.

• CLIP (Radford et al. [2021]): Aligns image and text representations in a shared embedding
space.

• SimCLR (Chen et al. [2020]): Maximizes similarity between representations of augmented
image pairs while minimizing similarity to other images in the batch.
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To prevent representation collapse, various techniques are employed, such as contrastive learning,
negative sampling, or the use of stop-gradient operations.

4 The power of Conditional Independence (CI)

We proceed with a theoretical work, Lee et al. [2021], where the authors unified the two types of
SSL losses and provided theoretical insights into the effectiveness of these algorithms given proper
conditional independence. To start with, we define the concepts of pretext task and downstream
task mentioned above in detail as follows.

Pretext Task: Learn a representation ψ(x1) close to ψ∗ := argming∈H E||X2 − g(X1)||2, where H
can vary for different settings. An example is all deep neural networks with a specific structure.

Downstream task: Perform linear regression on Y with ψ(X1), i.e. f(x1) := (W ∗)⊤ψ(x1), where
W ∗ ← argminW EX1,Y [||Y −W⊤ψ(x1)||2].

Our goal is to obtain good generalization with a pre-training stage on the pretext task with unlabeled
data only and finetuning on the downstream task with a small number of labeled data. In this section,
we introduce a way to ensure the success of such a procedure by the Conditional Independence (CI)
between X1 and X2 given Y :

P (X1, X2|Y ) = P (X1|Y )P (X2|Y ).

Before we step into the details, let us first get a good intuition about CI. We illustrate two examples
here. (1): One thought experiment we have mentioned above. We want to classify desert, forest,
and sea images. Denote X1, X2, and Y to be the input image, color channel, and downstream label,
respectively. Given knowledge of the label Y , one can possibly predict the background X2 without
knowing much about X1. In other words, X2 is approximately independent of X1 conditional on the
label Y . (2): Consider an image inpainting task where we are given some background information
X1 and want to recover the front of some hidden area X2. With proper label information Y (e.g., a
“building” with a detailed description, or a “mountain” with trees or with snow covering it) will
ensure that variation in X2 given Y is small, which is equivalent in a mathematical language that
X1 is approximate conditionally independent of X2 given Y .

Near conditionally independence basically states that knowing the information of Y , there will be a
small variance predicting X2 without even referring to the information of X1. It can be shown that
with exact CI, the perfect solution W ∗ of the downstream task would achieve 0 approximation error
when predicting Y .

The main insight from the CI point of view is, with approximate CI as in the above examples,
a method that predicts X2 from X1 will inadvertently implicitly encode and learn to predict Y
from X1 as an intermediate step, and then predict X2 from Y , thus confirming the success of this
pretext-downstream pretrain-finetune procedure.

However, the strict CI condition does not hold in general. We need to come up with a way to
characterize the extent that this statement holds. Thus, we propose the approximate conditional
independence as follows. A conceptual illustration is given in Figure 5.

ϵCI = EX1 ||E[X2|X1]− EY [E[X2|Y ]|X1]||2.
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Figure 5: Conceptual illustration of ϵCI , which can be viewed as quantification of extra shared
features between X1 and X2 are not captured by Y .

With proper sub-Gaussian assumptions on the formulation of data distribution, one can prove that

Test Error ≲
k

nL
+ ϵCI .

Where k is the cardinality of Y , nL is the number of (labeled) samples of the downstream task.
Constants are hidden within the ≲ operator. Omitting technical details, it tells us:

• With ERM, only nL ≍ Complexity of Function Class labeled samples are required in the
downstream finetuning stage to attain good generalization.

• Both terms are tight in some scenarios.

Given the theorem, we obtain a theoretical advice that we want to make X1 and X2 to have small
dependence given Y .

Some real-world X1 and X2 formulation:

• Context Encoder: a fixed area of an image is picked as X2, and the rest serves as X1.

• Masked AutoEncoder: instead of fixing the position of X2, during each epoch, random small
patches of an image are picked as X2, and the rest serves as X1.

• LLM: in BERT and GPT training, words in a sentence are randomly picked to be masked as
X2, and the whole sentence or the preceding words are used as X1.
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5 Unifying reconstruction- and similarity-based SSL

Here we briefly introduce some high-level ideas of loss unification in SSL. For detailed analysis and
full theorems, refer to Lee et al. [2021].

5.1 Unification Procedure

We start with the reconstruction-based SSL, where we mask X2 out and try to reconstruct it from
X1. The loss is

Lmask = E[||X2 − ϕ(X1)]||2

which requires σk(E[X2Y ]) > 01 Thus, to handle the non-linear dependence of X2 and Y , instead of
learning X2, we seek help from the generalized alternating conditional expectation (ACE) algorithm
that optimizes the following:

min
ϕ,η

LACE(ϕ, η) : E[||η(X2)− ϕ(X1)||]2.

Here η(·) can be any (deterministic) function.

Under norm constraint with ϕ, η, the ACE loss is equivalent to the so-called non-linear canonical
correlation analysis (CCA) loss:

max
ϕ,η

LCCA = E[||η(X2)
⊤ϕ(X1)||]2

The norm-constrained above CCA loss, plus normalization on ϕ, η and proper stop-gradient con-
figuration, leads us to the famous SimSiam loss function, a representative similarity-based SSL
algorithm. Viewing X1 and X2 in the ACE loss as images and description texts, we have also unifed
the CLIP loss into this regime.

5.2 Theoretical Implication

Under LCCA, we have the following theorem:

Representation Error ≲ min{ ϵ̃CI

β
,

α

1− ϵ̃CI
},

where β is the k-th maximal correlation between X2 and Y , α is the Bayes error of predicting
Y with X1, and ϵ̃CI = max||g||=1 EX1 [E[g(X2)|X1]− EY [E[g(X2)|Y ]|X1]]

2. Note that here we also
require the maximal correlations to be greater than zero.

1σk is the maximal correlation coefficient.
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