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1 Overview

Data augmentation encompasses various techniques and methods for generating additional samples
while maintaining their semantic significance. By employing these approaches, one can minimize
overfitting and enhance the generalization capabilities of a model, ultimately leading to improved
performance.

2 Introduction: Common Data Augmentation

2.1 Audio Data Augmentation

1. noise injection

2. shifting

3. changing the speed

4. changing the pitch

2.2 Text Data Augmentation

1. word/sentence shuffling

2. Paraphrasing

(a) word replacement

(b) syntax-tree manipulation

3. random word insertion

4. random word deletion

2.3 Image Augmentation

1. Operating on a single input T : X → X

(a) Geometric Transform: Flipping, Cropping, Rotation, Stretch, Zoom in/out

(b) Randomly Change: RGB color channels, contract, brightness

(c) Kernel Filters: Sharpness, blurring
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(d) Random Erasing

2. Mixup

T : X ×X → X

{
x1, x2 → ax1 + (1− a)x2

y1, y2 → ay1 + (1− a)y2

3. GAN: Generative Sythetic Data

4. Neural Style Transfer

3 Theoretical Analysis

3.1 Adding Gaussian noise

Using l2-loss L = EX,Y∼PX,Y
[(f(x)− y)2]

• Population Loss

Lϵ = EX,Y∼PX,Y
Eϵ∼N (0,σ2I)(f(x+ ϵ))2 ←− Objective function when we add noise (1)

Assuming σ2 thus O(σ2) are very small

≈ EX,Y∼PX,Y
Eϵ(f(x) + ϵT∇f(x)− y)2 (2)

= EX,Y Eϵ(f(x)− y)2 + 2ϵT∇f(x)(f(x)− y) + (ϵT∇f(x))2 (3)

= EX,Y (f(x)− y)2︸ ︷︷ ︸
L

+EX,Y Eϵ∼N (0,σ2I) 2ϵ
T∇f(x)(f(x)− y)︸ ︷︷ ︸

=0

+ExEϵ(ϵ
T ∇f(x))2︸ ︷︷ ︸

∇f(x)T ·ϵ · ϵT︸ ︷︷ ︸
=Eϵσ2I

∇f(x)

(4)

= L+ σ2Ex||∇f(x)||2︸ ︷︷ ︸
regularize to encourage flatness

(5)

• Empirical Loss

Ln,m =
1

n

n,m∑
i,j

(f(xi, yi)− yi)
2

s.t. (xi, yi) ∼ PX,Y , ϵj ∼ N (0, σ2I)

3.2 Group view

We could also consider augmentation from a group perspective. Considering a group of transforms
G (e.g., all rotations of images), we write the group element g ∈ G to be an act on the sample space
X. For each g ∈ G : X → X : x→ gx, and e ∈ G is the identity element of the group.
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We assume that for any group element g ∈ G and any X ∼ P, we have an equality in distribution:

X =d gX

pX(x) = pX(gx)

Another assumption: P (y|x) = P (y|gx),∀g,∀x (This is a quite strong assumption that usually does
not holds in real cases)

Let gj ∼ Q, where Q is a uniform distribution on G, and (xi, yi) ∼ PX,Y . The empirical loss

L̂n,m =
1

n

n∑
i=1

m∑
j=1

l
(
f(gjxi), yi

)
L̂(f) =

∫
G

∫
X.Y

l
(
f(gx), y

)
dPX,Y dQ(g)

We have the following understanding:

• Invariant representations. Given an observation x, and a group of transforms G acting on
X, a feature F : X → Y is invariant if for all g, x:

F (x) = F (gx)

• Equivariance. A model is called equivariant with respect to a group G acting on the sample
space if there is and induced group G∗ acting on the parameter space Θ such that for any
X ∼ Pθ, and any g ∈ G, there is a g∗ ∈ G∗ such that gX ∼ Pg∗θ

In the group view setting, below is a lemma that characterizes the bias and variance under
augmentation:

Invariance lemma: Let f be an arbitrary function. Let f̄(x) := Eg∼Qf(gx) be the “orbit average”
of f . (e.g. take all the rotations on X and then take the average)[1]

1. f̄(x) = E[f(X)|X ∈ Gx], where Gx := {gx : g ∈ G} (e.g. all the images generated from
rotating x)

2. EX∼Pf(X) = EX∼Pf̄(X) (unbiased)

3. CovX∼Pf(X) = CovX∼Pf̄(X) + EX∼PCovg∼Qf(gX). The original variance is always larger
than learning with augmentation

Intuitions

• augmentation improves sample efficiency and leads to variance reduction, but it’s not very
clear how it improves sample efficiency quantitatively

• With augmentation, the function class to search is smaller by ruling out f such that f(x) is
not the same as f(gx)

Some drawbacks of the Group view
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• Applicable to limited data augmentation. (rotation/flip can be viewed as a group, which
stretch cannot)

• Does not handle misspecification (p(y|x) ̸= p(y|gx))

• Not quantitative

4 Training with Data Augmentation

Now given that we have defined all data augmentations A, we can add the augmented data to
training samples and and formalize the empirical loss with DA

L̂n =
1

nm

n∑
i=1

m∑
j=1

l
(
f(Aj(xi)), yi

)
where {(xi, yi)}ni=1 are the original training samples, and Aj ∈ A are the (randomly) selected
augmentations applied to each sample.

To encourage DA consistency (DAC), we can train the model based on an alternative empirical loss:

L̂n =
1

n

n∑
i=1

l
(
f(xi), yi

)
+ λ · d

(
h(xi), h(Aj(xi))

)
(6)

where h is some invariant representation, predictor f = w ◦ h, and d(·, ·) stands for some distance.
The second term of the formulation 6 encourages the representation h (equivalently the prediction
f = w ◦ h) of the augmented data (xi and Aj(xi)) to be similar.

4.1 Results (Advantages) of using DAC

• It is shown that DAC (Data Augmentation Consistency) handles stronger misspecification of
data augmentations (ie. p(y|x) ̸= p(y|A(x)) for some A ∈ A) than DA (Data Augmentation)[2].

• When there is no misspecification (ie. y|x = y|Ax for all A ∈ A), define

Ã(X) =


...

Aj(xi)
...


i,j

M̃(X) =



...
xi
...
xi
...


i

where M̃(X) are simply copies of each training data xi to make it the same shape as Ã(X).
Further, we can define

daug ≜ rank(Ã(X)− M̃(X)) (7)

which measures the number of dimensions perturbed by DA.

Then with DAC, we have
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1. for linear function class (with DAC, ie. using empirical loss (6))

E
[
L(f̂DAC)− L∗

]
≤ O(

(d− daug)σ
2

n
) (8)

which is a smaller (tighter) upper bound compared to the naive case (without DAC, ie.
using empirical loss with only the first term of equation (6))

E
[
L(f̂)− L∗

]
≤ O(

dσ2

n
)

(Side note: it is also proven that risk of DAC < risk of DA, ie. DAC is expected to
perform better than naive training and training with DA.)

2. for two layer neural network (with DAC, ie. using empirical loss (6))

E
[
L(f̂DAC)− L∗

]
≤ O(Cw

√
(d− daug)σ2

n
) (9)

which is a smaller (tighter) upper bound compared to the naive case (without DAC, ie.
using empirical loss with only the first term of equation (6))

E
[
L(f̂)− L∗

]
≤ O(Cw

√
dσ2

n
)

where the predictor of the shallow network is fθ = (X · B)† · w, B is orthogonal and
∥w||1 ≤ Cw.

3. When DA is expansive, please refer to the analytical bound from last lecture.
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