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1 Review

In the last class, we introduced the domain adaptation and generalization problem, where the model
is trained on the source dataset and applied to the target dataset different from the source data.
There are three main settings below for domain adaptation dealing with the discrepancy between
the source and the target dataset.

• Covariate shift: PS
X ̸= PT

X ,PS
Y |X = PT

Y |X .

• Label shift: PS
Y ̸= PT

Y ,PS
X|Y = PT

X|Y .

• Concept/Model shift: PS
Y |X ̸= PT

Y |X . The relation of PS
X and PT

X is not specified.

We focus on the covariate shift in this note. Here are three different approaches to solve the problem:

• Reducing the selection bias by sample reweighting

• Invariant representation

• Label propagation

2 Sample Reweighting

Instead of using

L̂S(fθ) =
1

n

n∑
i=1

ℓ (fθ(xi), yi) , (1)

the sample weighting uses

L̂w(fθ) =
1

n

n∑
i=1

wiℓ (fθ(xi), yi) (2)

as the loss function, where wi = PT (xi)/PS(xi). The PT , PS here are density functions if xis are
continuous random variables and probability mass functions if xis are discrete.
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In this way,

E
xi∼PS

[
E

yi∼PY |X
L̂w(fθ)

]
=

1

n

n∑
i=1

E
xi∼PS

[
wi E

yi∼PY |X
ℓ (fθ(xi), yi)

]

=
1

n

n∑
i=1

∫
x
PS(xi)

PT (xi)

PS(xi)
E

yi∼PY |X
[ℓ (fθ(xi), yi)] dxi

= E
xi∼PT

[
E

yi∼PY |X
ℓ (fθ(xi), yi)

]
= LT (fθ),

where LT (fθ) is the population risk in the target domain.

Although sample reweighting can help reduce the bias, it faces three major problems below when
it comes to the application.

Problem a. The sample reweighting method implies PT /PS < ∞, so PS(xi) ̸= 0, ∀xi ∈ supp(PT ).
This requires supp (PT ) ⊂ supp (PS). That is to say, sample reweighting method only applies to
the case where the support set of the target domain is already in the source domain, which is a
relatively simple task compared to the general cases.

Problem b. It reduces the bias, but it potentially can amplify the variance, i.e., PT /PS can be
large.

Problem c. It is not clear whether estimating PT /PS is simpler than the original problem.

3 Invariant Representation

This is the focus of the last lecture.

X −→
fθ

Y

X −→
h∈H

Z −→
w

Y, where Z denotes the representation domain.

LT (w ◦ h) ≤ LS(w ◦ h) + d
(
PS
h(x), P

T
h(x)

)
+ λ∗

h, (Ben-David et al., 2006)

where λ∗
h = minŵ [LT (ŵ ◦ h) + LS (ŵ ◦ h)] , h is a fixed representation.

• Method: Minimize the first 2 terms, i.e., LS(w ◦ h) + d
(
PS
h(x), P

T
h(x)

)
(Ben-David et al.,

2006).

• Problem: λ∗
h might explode.

4 Label Propagation

Cai et al. (2021) proposes a new model for subpopulation shift based on label propagation. They
introduce a consistency regularization method to ensure the samples with similar semantic meanings
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to predict similarly (among all unlabeled samples). Suppose we have a good representation function,
where samples with similar semantic meaning or can be directly/indirectly connected by data
augmentations are close to each other (in L2 distance). Then the measure of inconsistency is
defined by:

RB(g) := P 1
2
(S+T )

[
∃x′ ∈ B(x), s.t. g(x) ̸= g(x′)

]
,

where B(x) is a set of data augmentations on x that can be viewed as a neighborhood of x. This
RB(g) serves as a consistency regularizer defined for all classifier g. Let µ be the consistency error
of the ground truth function g∗ , i.e., µ = RB(g

∗), then the algorithm is given by

ĝ = argmin
g

PS [g(x) ̸= gtc(x)] , s.t. RB(g) ≤ µ,

where gtc denotes the teacher classifier learned on the source dataset. In practice, one can use an
alternative objective function by adding a penalty term:

ĝ = argmin
g

PS [g(x) ̸= gtc(x)] + λRB(g).

Proof by looking at illustration. A toy example is given by Figure 1. In this picture,
µ = RB(g

∗) = 0. As long as gtc is at least 51% correct in each connected component of source
distribution, label propogation is perfect on the target domain.

Figure 1: Illustration of the label propagation framework (Cai et al., 2021).

Recall that µ = RB(g
∗), where g∗ is the optimal classifier on 1

2(S + T ).

RB(g
∗) := P 1

2
(S+T )

[
∃x′ ∈ B(x), s.t. g∗(x) ̸= g∗(x′)

]
.

It quantifies, for all image x, how likely B(x) contains some x′ from another class. (µ: misspecifi-
cation of the optimal classifier under B.)

When µ = RB (g∗) > 0, Domain Adaptation or B can be too aggressive to connect two classes by
mistake. Therefore, we need a technical assumption:

Assumption 1. Let Ci denote a connected component in 1
2 (PS + PT ). Assume that data augmen-

tation is (1/2, c) expansive, i.e., for all set A ⊆ Ci,

PCi(A) ≤ 1

2
=⇒ PCi

(⋃
x∈A

B(x)

)
≥ (c+ 1)PCi(A),
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where PCi denotes the conditional distribution of 1
2 (PS + PT ) on Ci, and c ≤ 1.

Under Assumption 1, the Label Propagation ensures that the target error of the classifier ĝ returned
by the algorithm is bounded by

Risk := P
x∼PT

[ĝ(x) ̸= g∗(x)] = O
(µ
c

)
.

Notice that, since c ≤ 1, the above bound cannot be better than the ground truth consistency
error µ. This result can also extend to finite sample analysis with standard analysis, i.e., the
generalization bound results introduced in the first part of this course.

Figure 2 presents an experiment in Cai et al. (2021) showing that label propagation via consistency
regularization works well for ENTITY-30, a subpopulation shift benchmark introduced in Santurkar
et al. (2020). As compared to the competitors, the target accuracy is improved by around 10%
using label propagation (referred to as “ours” in the table).

Figure 2: Comparison of performance on the ENTITY-30 task (Cai et al., 2021).

5 Data Generalization

In this section, we first introduce some more general domain shift settings. Denote the source
distribution by S and the target distribution by T . Moreover, let U be a “covering” distribution
with only unlabeled data. Figure 3 (Cai et al., 2021) summarizes some of the generalized settings,
including:
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• Unsupervised domain adaptation. This is the special case discussed in the previous
section, i.e., U = 1

2(S + T ).

• Semi-supervised learning or self-supervised denoising. When S = T = U , the setting
is identical to semi-supervised learning in a single domain.

• Domain expansion. The source distribution S, where we have labled data, is only a subset
of a larger target distribution T with unlabeled data.

• Domain extrapolation. The source distribution S and the target distribution T are not
directly connected, which means Assumption 1 is violated. However, they can be connected
through a larger distribution U .

• Multi-Source domain adaptation or domain generalization. There are multiple differ-
ent but related source domains S1, S2, S3, and the goal is to learn a model that can generalize
to a test distribution T .

Figure 3: Settings of generalized subpopulation shift (Cai et al., 2021). The figures only draw one
subpopulation i for each model.

Now we focus on the last setting: domain generalization. Suppose that we have e different
datasets Dt = {(xi, yi)}nt

i=1 where (xi, yi)∈Dt ∼ Pt, t = 1, . . . , e. (Here e stands for environment.)
We want to learn a learner that is robust to distribution shift or has a good out-of-distribution
generalization. The strategies include:

• Learning features that are invariant to all source tasks.

• Ensemble models or representation. Let ht be a representation function from the t-th source
domain St to a feature space and wt be a classifier on this feature space. Ensemble methods
build a model of the form 1

e

∑e
t=1 (wt ◦ ht), while representation learning uses 1

e

∑e
t=1 ht as

an invariant representation.

• “Model soup” proposed by Wortsman et al. (2022). Given multiple models fθ1 , . . . , fθe , Worts-
man et al. (2022) suggest using a single model with averaging parameters, i.e., f 1

e
(θ1+···+θe)

.
The motivation of model soup comes from an observation that (1) fine-tuned models often
appear to lie in a single low error basin and (2) interpolating the parameters of fine-tuned
models can improve accuracy compared to any individual model. Unlike conventional en-
semble methods, model soup saves inference or memory costs since it only builds a single
model.
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