Modern Topics on Statistical Learning Theory	Spring 2023
Lecture $1 - Basics$ of Machine Learning	
Prof. Qi Lei	Scribe: Qi Lei

1 Overview

Theme. In this lecture, we will talk about the theoretical foundation of many machine learning tasks, with a concentration on weakly-supervised learning.

Importance. We want to understand how/why machine learning works.

• For instance, a common scenario: after you train a giant model, and see it doesn't transfer to a smaller dataset. How do you know what went wrong? After you learn the course, you get to know there are roughly three possibility:

$ \rightarrow \text{knowledge doesn't transfer} \\ \rightarrow \text{not enough samples} $	fundamental statistical issue
\rightarrow computational issue	} optimization issue

2 Structure and logic of this course

ML (AI in general) is important and we have seen lots of incredible achievements.

Chatbot Medical Diagnose Alpha-Go

As we learn this course, we no longer care much about the data modality as in these examples, while we will view data as high-dimensional samples that are generated from a certain distribution.

Basics of ML. Machine learning usually consists of the following elements:

- data (MNIST, CIFAR10, IMAGENET)
- loss function (measuring the difference between prediction and true labels, l2, cross-entropy, etc)
- model (linear/affine, kernel, neural network)
- optimization ((stochastic) gradient descent, Adam, Adagrad, etc)

(Many implementation details are omitted: cross-validation, hyper-parameter tuning, regularization, etc)

Supervised learning 3

Input data: $\{(\underbrace{x_i}_{\text{feature}},\underbrace{y_i}_{\text{label}}\}_{i=1}^n, x_i \in \mathbb{R}^d, y_i \in \mathbb{R}$

Goal: Find prediction function $f_{\theta} : \mathbb{R}^d \to \mathbb{R}$, (Or $\mathbb{R}^d \to \mathbb{R}^c$) for multi label classification) such that

$$f_{\theta}(x_i) \approx y_i, \forall i.$$

In this course, we are interested in parametric models.

Empirical Risk Minimization (ERM).

$$\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \ell(f_{\theta}(x_i), y_i) \tag{1}$$

$$\xrightarrow{\text{concentrates to}} \underset{(x,y)\sim P_{X,Y}}{\mathbb{E}} \ell(f_{\theta}(x), y).$$
(2)

Hope: prediction function learned from (1) can perform well on (2).

Scope of this course 4

Traditional types of machine learning.

Unsupervised learning Supervised learning Reinforcement learning

Spectrum between supervised and unsupervised learning.

More labeled data involved	Unsupervised learning
	Self-supervised learning
	Meta-learning
	Domain generalization
	Domain adaptation
	Semi-supervised learning
	Supervised learning

Table distinguishing different types of learning.

Notation. L: labeled data; U: unlabeled data; S: source data; T: target data; e: number of environments/tasks.

learning task	data that model is trained on	data that your model is tested on
supervised learning	L	U
semi-supervised learning	L, U	U
domain adaptation	L^S, U^T	U^T
domain generalization	$L_1^S, L_2^S, \cdots, L_e^S$	U^T
meta-learning	$L_1^S, L_2^S, \cdots, L_e^S, L_e^T$	U^T
self/un-supervised learning	$U^S, \underbrace{L^T}_{\text{few-shot}}^{\text{few-shot}}$	U^T
reinforcement learning	source environment	target environment

5 Theoretical groundings of ML algorithms in general.

objective functions: e.g. sup.L: $\sum_{i} \ell(f_{\theta}(x_{i}), y_{i})$ or unsup.L: $||M - XX^{T}||_{F}^{2}$ Theoretical understanding requires studying the two aspects: $\Leftarrow \Rightarrow$ statistics optimization $\downarrow \qquad \qquad \downarrow$ whether optimal solution generalizes whether our algorithms find global minima \downarrow Together they form learning theory.