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1 Overview

In the previous lecture, we introduced the concept of differential privacy (DP).

This lecture will focus on the implementation of DP through specific mechanisms and their theo-
retical underpinnings.

2 Recap on Differential Privacy (DP)

Differential privacy [Dwo06] primarily addresses the security of an algorithm M : X n → Y, which
is designed to operate on datasets differing by a single entry, thereby safeguarding the privacy of
the data subjects.

Definition 1 (ϵ−DP). An algorithm M achieves ε-differential privacy if, for any two adjacent
datasets X,X ′ ∈ X n and for all subsets T ⊆ Y, the following inequality is satisfied:

P[M(X) ∈ T ] ≤ eε · P[M(X ′) ∈ T ] (2.1)

• The essence of randomness in this context is derived from the mechanism M , which incorpo-
rates stochastic processes to ensure that DP guarantees are met.

• The core principle of differential privacy involves utilizing a randomized response technique
to obscure individual data points, thus preserving privacy.

One effective method to implement this is through the Laplace mechanism, which we will explore
next.

3 Laplace Mechanism

The Laplace mechanism is central to achieving differential privacy through the injection of ran-
domness. It allows for the privacy-preserving release of statistical queries.

Definition 2 (Laplace Mechanism). Let f : Rn → Rk be a query function and ε > 0 be a privacy
parameter. The Laplace mechanism M(x) is defined as follows:

M(x) = f(x) + (Y1, Y2, . . . , Yk), (3.1)
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where Y1, Y2, . . . , Yk are independent random variables drawn from the Laplace distribution with
scale parameter b = ∆f

ε . The probability density function of each Yi is given by the Laplace distri-
bution:

p(x) =
1

2b
exp

(
−|x− µ|

b

)
.

The term ∆f denotes the ℓ1-sensitivity of the function f , which is defined as:

∆f = max
x,x′∈Rn:|x−x′|1≤1

|f(x)− f(x′)|1,

where | · |1 represents the ℓ1-norm. The ℓ1-sensitivity quantifies the maximum change in the output
of f when a single data point in the input dataset is modified while keeping all other data points
unchanged.

3.1 Laplace Distribution

The Laplace distribution is used within the Laplace mechanism to ensure that the probability of
output does not significantly change when a single data point in the input dataset is altered.

Definition 3 (Laplace Distribution). The probability density function (pdf) for the Laplace distri-
bution, centered at µ with scale b, is given by:

p(x) =
1

2b
exp

(
−|x− µ|

b

)
(3.2)

Figure 1: Laplace Distribution

This distribution is characterized by a variance of 2b2.
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Characteristics of the scale parameter b:

• A larger b results in a flatter distribution curve, indicating higher variance and thus more
privacy.

• As b decreases towards zero, the curve becomes increasingly peaked, indicating lower variance
and reduced noise.

3.2 ℓ1-Sensitivity

The ℓ1-sensitivity of a function quantifies the maximum impact that a single individual’s data can
have on the function’s output, which is essential for determining the noise required in differentially
private mechanisms.

Definition 4 (ℓ1-Sensitivity of f). For a function f : X n → Rk, the ℓ1-sensitivity, denoted by ∆f ,
is:

∆f = max
x,x′∈Xn:∥x−x′∥1≤1

∥f(x)− f(x′)∥1, (3.3)

where x and x′ are neighboring datasets differing in at most one element.

The ℓ1-sensitivity directly influences the scale of the noise distribution in differentially private
mechanisms, such as the Laplace mechanism, to ensure a desired level of privacy protection.

With a clear understanding of the Laplace distribution and ℓ1-sensitivity, we can now explore the
theoretical guarantee that the Laplace mechanism provides in terms of ε-differential privacy.

3.3 Theoretical Guarantee of the Laplace Mechanism

Theorem 5. The Laplace mechanism satisfies ε-differential privacy.

Proof. Let X and X ′ be two neighboring datasets differing in at most one element, and let M(X)
and M(X ′) be the probability density functions (pdfs) of the Laplace mechanism applied to X and
X ′, respectively. For any output z ∈ Rk, the ratio of the probabilities under X and X ′ is given by:
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PX(z)

PX′(z)
=

∏k
i=1 exp

(
− ε|f(X)i−zi|

∆f

)
∏k

i=1 exp
(
− ε|f(X′)i−zi|

∆f

) (3.4)

=

k∏
i=1

exp

(
ε(|f(X ′)i − zi| − |f(X)i − zi|)

∆f

)
(3.5)

≤
k∏

i=1

exp

(
ε|f(X ′)i − f(X)i|

∆f

)
(3.6)

= exp

(
ε

∆f

k∑
i=1

|f(X ′)i − f(X)i|

)
(3.7)

= exp

(
ε∥f(X ′)− f(X)∥1

∆f

)
(3.8)

≤ exp(ε), (3.9)

where the last inequality follows from the definition of ℓ1-sensitivity, which ensures that ∥f(X ′)−
f(X)∥1 ≤ ∆f . This result demonstrates that the Laplace mechanism satisfies ε-differential privacy.

The proof relies on the properties of the Laplace distribution and the ℓ1-sensitivity of the query
function f . By bounding the ratio of the probabilities of any output under neighboring datasets,
we show that the Laplace mechanism provides a strong privacy guarantee, limiting the ability of
an adversary to distinguish between the presence or absence of a single individual’s data in the
dataset.

3.4 Recap of Query Functions

Query functions in differential privacy can range from simple aggregations to complex computa-
tional models. Let f : X n → Rk be a query function, where X is the input domain and n is the
dataset size. Some examples include:

• f(x) calculating aggregate statistics like sum of ages or average income in dataset x.

• In medical research, f(x) counting disease incidence across different populations.

• In federated learning, f(x) computing gradients or model updates based on distributed data.

Having explored query functions and the Laplace mechanism, we will now examine their application
to high-dimensional data, particularly in federated learning with deep neural networks.
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4 Limitations of Differential Privacy in High-dimensional Settings

4.1 Federated Learning and the Cloud Server

• Federated learning is a distributed machine learning approach that allows edge devices to
collaboratively train a model without sharing their local data directly. In this setup, devices
compute gradients or model updates based on their local data and send these updates to a
central cloud server.

• The server then aggregates the updates to improve the global model. Notably, only the
gradients or model updates are transmitted to the server, not the raw data itself.

Figure 2: Federated Learning Framework

The aggregation process in federated learning can be mathematically represented as:

G =
∑
xi∈E

∇L(θ;xi) (4.1)

• Here E represents the ensemble of local data points on each device, and ∇L(θ;xi) denotes
the gradient of the loss function with respect to the global model parameters θ.

• However, the gradients, being derived from the local data, may still contain sensitive infor-
mation that could potentially be exploited to reconstruct the original data.

To evaluate the risk of privacy breaches, it is crucial to assess the ℓ1-sensitivity of the aggregation
function f , which maps the input data X = [x1, x2, . . . , xβ] to the gradients:

f : X 7→
β∑

i=1

∇L(Θ;xi) (4.2)

• The ℓ1-sensitivity, denoted ∆(f), measures the maximum change in the output of f when
one data point in X is modified slightly. To ensure privacy, the Laplace mechanism can be
employed, adding noise scaled to ∆(f)/ε to achieve ε-differential privacy.
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• However, applying differential privacy techniques to high-dimensional gradients can be chal-
lenging without significantly impacting the gradient information’s utility.

4.2 Example: Two-layer Neural Network

To illustrate the challenges of preserving privacy in high-dimensional settings, let’s consider an
example of a two-layer neural network used in federated learning. The network consists of an input
layer, a hidden layer with m neurons, and an output layer. The loss function for this network,
calculated for a single data point (xi, yi), can be expressed as:

L(Θ;xi, yi) =

 B∑
j=1

∑
wj∈W

ajσ(w
T
j xi)− yi

2

(4.3)

where Θ represents the model parameters, B is the batch size, aj is the output of each neuron in
the hidden layer, W ∈ Rm is the weight matrix, and σ is the activation function.

The gradient of the loss function with respect to the model parameters is a key component in the
training process. For each neuron in the hidden layer, the gradient with respect to its output aj is
given by:

∇ajL(Θ;xi, yi) =

[
B∑
i=1

riσ(w
T
j xi)

]
∈ R(m+1) (4.4)

where ri is the residual for each data point, defined as:

ri =
B∑
j=1

ajσ(w
T
j xi)− yi (4.5)

Similarly, the gradient with respect to each weight wj is:

∇wjL(Θ;xi, yi) =

[
B∑
i=1

riσ
′(wT

j xi)xi

]
∈ Rm (4.6)

These gradients, computed on the local data, are then sent to the cloud server for aggregation.

Assessing the Laplace Mechanism for High-dimensional Gradients

Main takeaways:

• To address the privacy concerns in federated learning, we aim to answer a crucial question:
Is it possible to reconstruct a local user’s data from the shared gradients?

6



• To answer this question, we need to evaluate the ℓ1-sensitivity of the gradient and determine
the magnitude of noise required to achieve ε-differential privacy using the Laplace mechanism.
If the ℓ1-sensitivity is high, a significant amount of noise must be added to the gradients to
maintain the desired level of privacy.

• However, adding excessive noise can severely degrade the utility of the model by obscuring
the informative gradients, making it difficult to learn effectively from the data.

In the following subsection, we will compute the ℓ1-sensitivity for the two-layer neural network
example and analyze the implications of applying the Laplace mechanism in high-dimensional
settings.

4.3 Differential Privacy in Neural Networks

To understand the challenges of applying differential privacy in neural networks, let’s consider a
random network model with the following assumptions:

• The outputs yi are normally distributed, yi ∼ N (0, Id), and each aj is an output of a neuron.

• The neural network output remains consistent for normalized inputs |xi| = 1 and binary
labels yi ∈ {+1,−1}.

Given neighboring datasets X and X ′ that differ by at most one element, the difference in the
residuals r and r′ for input pairs (xi, x

′
i) is represented by:

r − r′ =
1

m

m∑
j=1

(
σ(w⊤

j xi)− σ(w⊤
j x

′
i)
)
, (4.7)

where σ denotes the activation function. This captures the sensitivity of the network to input
perturbations.

In particular, for the first m coordinates, the change in the gradient of the activation outputs for
neighboring inputs xi and x′i can be bounded as:

|G(aj)−G(a′j)| ≤ |ri|
(
|σ(w⊤

j xi)|+ |σ(w⊤
j x

′
i)|
)
, (4.8)

where G denotes the gradient and ri the residual component. The bound follows from the Lipschitz
continuity of σ, with σ being 1-Lipschitz, and the expected value of |σ(w⊤

j xi)| being capped by

C log
(
n
s

)
for a chosen confidence level s and dimension d.

For the last m vectors in Rd, we estimate the gradient difference by:

|G(wj)−G(w′
j)| ≤ C

(
|xi|1 + |x′i|1

)
= 2C

√
d, (4.9)

where |xi|1 denotes the ℓ1-norm, and we use the inequality |xi|1 ≤
√
d|xi|2 given the normalized

input condition |xi|2 = 1.

The overall sensitivity ∆ for the network, taking into account the sum of the individual sensitivities,
is thus bounded by:

∆ ≤ n · C log
(n
s

)
+ Cm ·

√
d = O(m

√
d). (4.10)
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To maintain differential privacy, Laplacian noise proportional to ∆
ε is added, leading to a noise

variance of 2b2.

It is not hard to observe that such an addition is highly impractical:

• The scale of the noise can be excessive, particularly for high dimensions d and small privacy

parameter ε, with a noise magnitude on the order of d
√
m

ε2
, which may overwhelm the utility

of the output.

• In practice, Differential Privacy is too strong a guarantee and not super appropriate in some
scenarios.

4.4 Scenarios Where Differential Privacy May Not Be Necessary

In certain scenarios, differential privacy might not be strictly necessary. Consider, for example, a
2-layer neural network with a small number of layers. If external noise is inherent in the system,
the gradients can be expressed as:

G(a) = W

(
B∑
i=1

rix
T
i

)

G(w) = a

(
B∑
i=1

rix
T
i

)
∈ Rm×d

In such cases, one can only recover a linear combination of the data rather than the individual
data points unless strong prior information is assumed. This simple example demonstrates that a
scenario exists where data is safe even without DP guarantees. DP might not be the panacea for
data privacy, and sometimes, it is important to analyze the problem on a case-by-case basis.

5 Reconstruction Attacks

Given the challenges and potential weaknesses in preserving privacy through traditional differential
privacy mechanisms in high-dimensional settings, as explored in Section 4, it is crucial to consider
the robustness of these mechanisms against sophisticated data reconstruction techniques.

In this section, we discuss two types of reconstruction attacks that demonstrate the potential for
adversaries to approximate private data, despite the application of differential privacy.

These attacks underscore the need for continuous evaluation and enhancement of privacy-preserving
methods in the face of evolving threats.
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5.1 Gradient Inversion Attack

This type of attack demonstrates a potential vulnerability in differential privacy by attempting to
approximate the input data. The attack involves solving the following optimization problem:

min
x̂i,ŷi

d

(
1

B

B∑
i=1

∇L(θ̂; x̂i, ŷi), GT

)
, (5.1)

where d represents a distance metric such as the ℓ2-norm or cosine similarity, and GT is the target
gradient. Notably, this approach challenges the sufficiency of noise addition, as detailed in Lei et
al.[Lei+19], since the problem becomes NP-hard.

5.2 Tensor-based Method on Two-layer Networks

Building on the theme of reconstructing inputs, Wang et al.[WLL23] introduced a tensor-based
method specifically for two-layer networks. This method allows for the recovery of inputs x1, . . . , xB
with a certain degree of accuracy, constrained by:√

1

B

∑
i

∥x̂i − xi∥22 ≤ O

(
B
√
d√

m

)
(5.2)

This inequality provides a bound on the error of the recovered data when using their method.

5.3 Defense Mechanisms Evaluation

The evaluation of defense mechanisms against such attacks has been comprehensively analyzed by
Liu et al. (2024) [LWL24]. The following table summarizes the complexities associated with various
defense strategies:

Defense Complexity

No defense B
√

d/m

k-Local aggregation kB
√
d/m

ℓ2-Gradient noise (B + σ)
√

d/m

Gradient clipping B
√

d/m

DP-SGD
(
B + σmax{1, ∥g∥s }

)√
d/m

p-Dropout B
√

d/mp
Gradient pruning Not applied

Table 1: Evaluation of different defense mechanisms based on complexity, as explored by Liu et al.
(2024) [LWL24].

These complexity measures serve as upper bounds; discussions of lower bounds are proposed for
future research.
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