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1 Motivation

There are many different kinds of privacy, but currently differential privacy is the defining criteria,
and almost ubiquitous. Consider a typical scenario involving a hospital that reports certain disease
statistics, such as the number of AIDS cases relative to the patient count. The common belief is
that this statistical information can be safely published without compromising individual privacy.
However, an example of how this can go wrong is when statistics reveal that 4 out of 2436 patients
have AIDS one week, and the following week the number changes to 5 out of 2437. The inference
that the newly added individual has AIDS illustrates a privacy breach. Differential privacy addresses
this issue by ensuring that the difference in observed data, such as statistical reports, does not
reveal specific private information about individuals.

Another practical example involves interactions with AI models like ChatGPT. Suppose you
contribute to the training data of ChatGPT 3.5 and then interact with the upgraded ChatGPT 4.
The updates in the model, driven by your input, might lead to concerns about whether the model is
memorizing specific training data. Interacting with different versions of the model could potentially
expose parts of the training data, highlighting the need for robust differential privacy measures to
prevent such unintended disclosures.

2 Reconstruction Attack

Why do we introduce attack before defining data privacy?

1. the idea of an attack can exist without proper definition of privacy

2. it can help us evaluate whether a notion of privacy is too strong or too weak:

• notion of privacy (with Definition A) is satisfied but still allows successful attacks ⇒ Def
A is too weak.

• notion of privacy with Def B is not satisfied but no attacks can succeed ⇒ Def B is
excessively stringent.

Understanding the various types of attacks and the scenarios in which they occur is essential to
effectively define and uphold privacy standards.

Example. We look at a reconstruction attack on synthetic US Census data[3]. In this as in many
cases, sharing statistical information can be a public benefit. Statistical information does not need
to be private. However, personal information needs to be protected, and statistical information may
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still reveal personal information. See Table 1 for ”fictional statistical data for a fictional block” [3].
When count is ≤ 2, that data entry (row) is hidden, since we can recover all ages for that group
using mean and average.

Table 1: Synthetic Data from the US census

Statistical Group Description Count Age Median Age Mean

1A Total Population 7 30 38
2A Female 4 30 33.5
2B Male 3 30 44
2C Black/AA 4 51 48.5
4A Black/AA Female 3 36 36.7

Note that from Groups 2C and 4A, we can still infer that the Black/AA male is of age 84 =
48.5*4-36.7*3, and therefore the data is not private[3].

A general attack that tries to recover all microdata from published statistics works as follows:

1. treat the attributes of each person as a collection of variables

2. formulate each row in the published statistical table as mathematical constraints/equations

3. find a feasible solution that satisfies all constraints (we can solve the problem using integer
programming)

If the statistics are highly constraining, the solution is unique, and we can recover information on
every person.

Example. We now examine the Dinur-Nissim database reconstruction attack[1].
In the database shown in Table 2, each row is a data point and each column is a feature. The first
four columns are the identifier information and the last column is the sensitive information.

Table 2: DN Database Reconstruction Attack

Name Postal Code Date of Birth Sex Has Disease?

Alice K8V7R6 5/2/1984 F 1
Bob V5K5J9 2/8/2001 M 0

Charlie V1C7J 10/10/1954 M 1
David R4K5TI 4/4/1944 M 0
Eve G7N8Y3 1/1/1980 F 1

In our threat model, we ask: how much capacity does the adversary have? i.e., how hard it is to get
the secret bit from the statistics of the queried row?

Let d =(Has disease?), A(S) =
∑

i di = (# of disease = 1 in set S). For a set S, the data curator
will generate the answer r(S). e.g S = { Alice, Bob, Charlie}, r(S) = 2.
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• If r(S) is independent of A(S), we wouldn’t reveal any information, but this is in some cases
impractical, the utility of the database will be ruined.

• If r(S) = A(S), then we can reconstruct d easily. Let n be the number of rows in the table.
Then

d =


r({1})
r({2})

...
r({n})


• If r(S) + A(S)+ bounded noise, i.e. |r(S)− A(S)| ≤ E for some constant E, this is a more
interesting case.

From [1], we have the following result:

Theorem 1. Let n = # of entries. If the adversary is allowed to ask 2n subset queries, and the
curator adds noise with bound E, then the adversary can reconstruct all but 4E entries.

Remark :

• Even when E scales with n, recovery ratio can be high. Let E = n/401, then the bound tell
us we can reconstruct n− n

100 rows, i.e 99% of the data!

• 2n is not a tight upper bound for the number of queries needed.

Proof. Attack as follows:

Algorithm 1 Attack

1: ask all 2n questions
2: for c ∈ {0, 1}n do
3: if ∃S st |

∑
i∈S ci − r(S)| > E then

4: rule out c
5: else
6: output c ▷ This is equivalent to output any c that’s not ruled out

Easy to see that the true answer d is not ruled out. Let I0 = {i : di = 0}, I1 = {i : di = 1}. Note
the output is not necessarily unique. For any c in the output, we have

|
∑
i∈I0

ci − r(I0)| ≤ E, |r(I0)−
∑
i∈I0

di| ≤ E

thus c, d differs at most 2E on I0. By same argument, we have c, d differs at most 2E on I1.

Theorem 2. [1] If the adversary is allowed to ask O(n) subset queries and E = O(α
√
n), then one

can reconstruct all but O(α2) entries.

Remark:
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• Previously for E = n/401 = O(n) ∝ α
√
n, α = O(

√
n). Thm 2 gives the bound O(n), which

is consistent with the result from Thm 1, n/100.

• Thm 2 is tighter in terms of the number of subset queries allowed.

• In the next lecture, we will see that with privacy guarantees, adding noise of O(
√
n) is sufficient.

This bound on E is tight and the best possible (cannot get the same result with a smaller E).

Proof not presented here.

3 Differential Privacy

Differential privacy is a concept centered around a mathematical framework where an algorithm, M ,
maps a set of observations, X n, to an output, Y. The output, Y , could represent various statistical
data like the summation of people with a specific disease or a model trained from the data. The
goal of (ϵ-pure) differential privacy is to ensure that for all pairs of neighboring datasets X and X ′

and T ⊆ Y, the probability of M(X) ∈ T is not significantly different from M(X ′) ∈ T .

Definition 3. [2]Let X n be a collection of datasets. For an algorithm M : X n → Y, we say M
provides ϵ-(pure) differential privacy if for all ”neighboring” X,X ′ ∈ X n (X,X ′ differ on exactly
one entry), and any T ⊆ Y,

P(M(X) ∈ T ) ≤ eϵ P(M(X ′) ∈ T ).

Note

• the randomness comes from the algorithm M

• switching role of X,X ′, from the definition we have

eϵ P(M(X ′) ∈ T ) ≤ e2ϵ P(M(X) ∈ T )

This implies 1 ≤ e2ϵ, so ϵ needs to be nonnegative.

• this is a worst-case guarantee as we have a uniform bound for all neighboring X,X ′ and any T

• as ϵ decreases, the inequality above gives a tighter bound, resulting in stronger DP. Practically,
ϵ is typically within the range of 0.5 to 5; values outside this range may render the privacy
either ineffective or suspiciously stringent.

• we write the multiplicative as eϵ for convenience. In the more general case where we have
more than one secret bit, we could have a different bound for each bit, and instead of the
result being a product of multiple epsilon values, the multiplicative would become exp(

∑
i ϵi)

Furthermore, differential privacy is symmetric, meaning that the datasets X and X ′ can be
interchanged without affecting the privacy guarantees. In practice, this manifests as an observer
being unable to distinguish between two datasets based on the observed outputs, such as the number
of disease cases, thereby maintaining privacy across all neighboring datasets.
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Differential Privacy Guarantee:
The differential privacy (DP) guarantee fundamentally complicates the exact reconstruction of a
dataset.

Consider the following hypothesis testing problem.

H0 : the underlying dataset is X

H1 : the underlying dataset is X ′

Then from the definition of ϵ-DP we have a bound for the test statistics in the likelihood ratio test

P [observation = Y |H0]

P [observation = Y |H1]
∈ (e−ϵ, eϵ)

This statistical framework makes it challenging to decisively refute any hypothesis, rendering
any attempts to do better than a random guess unlikely. In essence, if reconstructing data from
observations is more complex than hypothesis testing, the DP guarantee asserts that one cannot
perform hypothesis testing effectively, thereby safeguarding against the possibility of reconstruction.

In the next lecture, we will see a specific choice of algorithm M and that DP is too strong for modern
reconstruction problems.

4 Acknowledgement

Part of the content was from Prof. Gantam Kamath’s notes for CS860.

References

[1] I. Dinur and K. Nissim. Revealing information while preserving privacy. pp. 202–210, 06 2003.
doi: 10.1145/773153.773173

[2] C. Dwork and A. Roth. The algorithmic foundations of differential privacy. Foundations and
Trends in Theoretical Computer Science, 9, 01 2013. doi: 10.1561/0400000042

[3] S. Garfinkel, J. Abowd, and C. Martindale. Understanding database reconstruction attacks on
public data. Communications of the ACM, 62:46–53, 02 2019. doi: 10.1145/3287287

5

https://doi.org/10.1145/773153.773173
https://doi.org/10.1561/0400000042
https://doi.org/10.1145/3287287

	Motivation
	Reconstruction Attack
	Differential Privacy
	Acknowledgement

