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1 Overview

We will explore Data Augmentation, a method for generating new data from existing datasets while
preserving their semantic meaning.

Topic today

1. Different types of data augmentation.
2. Different views to understand it.
3. How to make full use of it.

Goal

Reduce overfitting/improve generalization

2 Common Ways of Data Augmentation

Imagery data:

• Operating on a single input T : X → X

– Geometric Transform: Flipping, Rotation, Stretch, Zoom in/out, Cropping

– Randomly Change: RGB color channels, contrast, brightness

– Kernel Filters: Sharpness, blurring

– Random Erasing

• Mixup: T : X ×X → X

– For instance:
x1, x2 → ax1 + (1− a)x2

y1, y2 → ay1 + (1− a)y2

soft-labeled w/classification

• GAN(generative model): Generative Synthetic Data

• Neural Style Transfer: Improve robustness of the trained model.
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Audio data:

• increasing noise

• change in pitch/speed

• shifting

Text Data Augmentation

• Word/sentence shuffling

• Paraphrasing

– Word replacement

– Syntax-tree manipulation

• Random word insertion

• Random word deletion

3 Theoretical Analysis

3.1 Adding Gaussian noise

Using l2-loss:
(L = EXY∼PXY

[(f(x)− y)2]

Lϵ = Exi∼PXi
Eϵ∼N(0,σ2I)

[
(f(x+ ϵ)− y)2

]

Ln,m :=
1

n

n∑
i=1

m∑
j=1

(f(xi + ϵj)− yi)
2 .

Notice:
xi, yi ∼ Px,y, ϵj ∼ N (0, σ2I).

3.1.1 Population Loss

Objective function when we add noise:

Lϵ = EXY∼PXY
Eϵ∼N(0,σ2I)[(f(x+ ϵ)− y)2] (1)

≈ EXY∼PXY
Eϵ[f(x) + ϵT∇f(x) + ||ϵ||2 − y)2] (2)

= const(O(σ4)) + EXY∼PXY
Eϵ[(f(x)− y)2 + 2ϵT∇f(x)(f(x)− y) + (ϵT∇f(x))2] (3)

= EXY Eϵ[(f(x)− y)2] + 2ϵTEXY Eϵ[∇f(x)(f(x)− y)] + EXY Eϵ[(ϵ
T∇f(x))2] (4)

= L+ 0 + σ2EX ||∇f(x))||2 (5)
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3.1.2 Empirical Loss

Lnm =
1

n

∑
i,j

(f(xi, ϵj)− yj)
2 (6)

3.2 Introducing invariance

Chen et al. [2020] Considering G: a group of transformations (e.g., all rotations). For g ∈ G : X →
X : x → gx, and e ∈ G is the identity element of the group. Then, we have the orbit average of
f(take the average of all the rotations on X):

f̄nm = Eg[f(gx)] = Eg[f(gx)] (7)

4 Using/Training with Data Augmentation

Yang et al. [2023] Empirical loss with DA:

4.1 Adding augmented data to the training data

The empirical loss would be as original:

L̂n =
1

nm

n∑
i=1

∑
A∈A

l(f(A(xi)), yi) (8)

with (xi, yi) the original training data points, A is the set of augmentations, and m=||A||.

4.2 Encourage data augmentation consistency

To encourage DA consistency, we can train the model based on an alternative empirical loss:

L̂n =
1

n

n∑
i=1

l(f(xi), yi) + λ ·
∑
A∈A

d(h(xi), h(A(xi))) (9)

Here, h is some function h is some invariant representation, predictor f = w·h. λΣA∈Ad(h(xi), h(A(xi)))
encourages the representation augmented data to be similar.

It is shown that DAC handles stronger data augmentation (with misspecification) more than DA.

Without misspecification:

A(x) =


A1(x1)
A2(x1)

...
Am(x1)


n×(mtimesd

, M(x) =


x1 x1 . . . x1
x2 x2 . . . x2
...

...
. . .

...
xn xn . . . xn


n×d

.
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With m = |A|, let daug = rank(A(x)−M(x)),
With DAC, we have:
(a) For linear function class:

E
[
L(f̂DAC)− L∗

]
≤ O

(
(d− daug)σ

2

n

)
.vs(DA : O

(
dσ2

n

)
),

which shows a tighter upper bound compared to the naive case (without DAC, ie. using empirical
loss with only the first term of the equation we have excess risk of DA > risk of DAC.

(b) w/ two-layer neural network

(DAC) ≤ O

(
Cω

√
(d− daux)σ2

n

)
. ≤ O

(
Cω

√
dσ2

n

)
.

f0 = (X ·B)+ · w.

where the predictor of the shallow network is f0 = (X ·B)+ · w, B is orthogonal and ∥w∥1 ≤ Cw.

5 DA as feature manipulation

Shen et al. [2022] Imaging an image of a car driving on a straight road in the daytime, you can view
the blue sky as the background. We have the features:
(a) easy and good to learn: the car body.
(b) hard but good to learn: small features.
(c) easy but bad to learn: spurious feature and irrelevant feature.
(d) hard and bad to learn: spurious feature and irrelevant feature which contribute to the gradient.

Analyze the trending dynamics of GD:
GD fit data with (a) and (c) first, which may leads to overfit to noise/ bad features.

DA: (b)=>(a), (c)=>(d)
Still, take example of an image of a car driving on a straight road in the daytime, you can view the
blue sky as the background.

x = a single sample point

x1
x2
...

xpatch
...
xp


⇒

corresponds to
corresponds to
corresponds to
corresponds to
corresponds to

D-patches
cor unde
cor body
road
cloud

Here xp is the k-th good feature.
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We have good features
xk = ρk · y · k.

which includes small features hard to learn, and large features easy to learn.

We also have bad features

σ2ξ is large. ξ ∼ N

(
0,
σ2ξ
d
I

)
.

Define the network as:
f(W ;x) =

∑
c

∑
p

ψ(wc · xp)

With gradient flow on logistic regression objective of f:
Learning dynamics on good features:

d

dx
(wc · vk) ≈ ρkψ

′(|wc · vk|).

Learning on noise:
d

dt
w

(i)
c,ξ ≈

1

n
σ2ξy

(i)ψ′(|w(i)
c,ξ|).

6 Summary

DA (without misspecification):

good and hard converted to good and easy features

bad and easy converted to bad and hard features.
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