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What is Adversarial Examples?

sports car toaster

instances with small, intentional feature perturbations to make models
predict incorrectly

[1] Blog post by Emil Mikhailov and Roman Trusov: How Adversarial
Attacks Work
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Adversarial Examples for Discrete Data

Task: Sentiment Analysis.
Classifier: LSTM.
Original prediction: 100% Positive.

I suppose I should write a review here since my little Noodle-oo is
currently serving as their spokes dog in the photos. We both love
Scooby Do’s. (· · · 135 unchanged words omitted· · · ) The pricing is
also cheaper than some of the big name conglomerates out there.
I’m talking to you Petsmart! I’ve taken my other pup to Smelly
Dog before, but unless I need dog sitting play time after the cut,
I’ll go with Scooby’s. They genuinely seem to like my little Noodle
monster.

small feature perturbations
A human should not be able to detect if the text has been manipulated.
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Adversarial Examples for Discrete Data

Task: Sentiment Analysis.
Classifier: LSTM.
ADV prediction: 100% Negative.

I suppose I should write a review here since my little Noodle-oo is
currently serving as their spokes dog in the photos. We both love
Scooby Do’s. (· · · 135 unchanged words omitted· · · ) The pricing is
also cheaper than some of the big name conglomerates out there
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Framework

General framework of generating adversarial examples with discrete data:
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Candidate Generation

small feature perturbations

Pick up word/sentence candidate set by semantic and syntactic
similarity.

[1] V. Kuleshov, S. Thakoor, T. Lau, and S. Ermon, “Adversarial examples
for natural language classification problems.” 2018
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Attacking Procedure

to make models predict incorrectly

Find a good combination from the candidate sets:
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A General Formulation

We consider a target attack by selecting from possible candidates

Problem 1 (target attack)
x: input document

Tl: word paraphrasing indexed by l
V : word2vec/bag of word embedding
C : classifier that outputs target label’s probability
Find the best transformation labeled by l, with at most m word replacements

l∗ = argmax
l∈[k]n,‖l‖0≤m

C (V (Tl(

x

))).

Or equivalently
S∗ = argmax

|S|≤m
f (S), (1)

f : a set function, f (S) = maxsupp(l)⊂S C (V (Tl(x)))
S : support of l, indicating the words to be changed
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Hardness: NP hardness

Problem is computationally intractable:

Lemma 1
For a general classifier C , problem 1 is NP-hard. Even for a convex C ,
problem 1 can be polynomially reduced from subset sum and hence is
NP-hard.
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Theoretical support for greedy methods

Fact: Submodular Optimization
The problem of maximizing a monotone submodular function subject to a
cardinality constraint admits a 1− 1/e approximation with greedy method.

Our target function f (S) is monotone non-decreasing
Do some non-trivial neural networks yield submodular functions?
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Neural Networks with submodular property for discrete set
of attacks

Simplified W-CNN [1]

Theorem 1

For W-CNN classifier with no softmax layer, no overlaps between each
window, and nonnegative weights in the last layer, f WCNN(S) is submodular.

[1] Yoon Kim, "Convolutional Neural Networks for Sentence Classification",
EMNLP 2014.
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Neural Networks with submodular property for discrete set
of attacks

one-hidden-node recurrent neural network

ht = φ(wht−1 +m>vt−1 + b) (2)

Theorem 2

For RNN with T time steps and single hidden nodes as in (2), if the
activation is a non-decreasing concave function, then f RNN(S) is submodular.

Qi Lei (UT Austin) Discrete Attacks (SysML) April 1st, 2019 13 / 22



Outline

1 Introduction to Adversarial Examples

2 General Framework
Mathematical formulation
Theoretical Findings

3 Our methods and Experiments

Qi Lei (UT Austin) Discrete Attacks (SysML) April 1st, 2019 14 / 22



Methodology: Gradient-guided Greedy Method

Intuition: one replacement a time, =⇒ greedy method is slow
With the gradient information, we

pick up M most important words to replace, (e.g. {like, eat, cafe})
greedy search over the replacements for these M words

Replace M words at a time.
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Comparisons with prior work

Table: Comparisons with [1] and [2], on WCNN classifier with 5% dropout, with up to
20% word replacements. (ASR denotes attack success rate)

Method objective-guided greedy [1] gradient [2] ours

Fake News Detection ASR: 28.4% 12.8% 45.4%
time (s): 1.46 0.21 0.31

Spam Filtering ASR: 24.9% 3.4% 45.3%
time (s): 0.33 0.05 0.09

Yelp Review Evaluation ASR: 45.0% 9.1% 55.9%
time (s): 0.21 0.03 0.05

[1] V. Kuleshov, S. Thakoor, T. Lau, and S. Ermon, “Adversarial examples for
natural language classification problems.” 2018. (Objective-guided greedy)
[2] Z. Gong, W. Wang, B. Li, D. Song, and W.-S. Ku, “Adversarial texts with
gradient methods.” 2018. (Gradient method)
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Human Evaluation

5 people randomly evaluate 60 texts for each task.

Dataset News Trec07p Yelp

Original 70.0% 80.0% 100.0%
Adversarial 50.0% 80.0% 100.0%

Table: Classification Accuracy.

Dataset News Trec07p Yelp

Original 3.06 ± 0.67 3.23 ± 0.31 1.93 ± 0.55
Adversarial 3.13 ± 0.50 3.10 ± 0.40 2.10 ± 1.05

Table: Quality of the text: On a scale of 1-5, how likely the text is human written.
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Conclusions

Theoretical part:
NP-hardness
Explore submodularity for some neural networks

Experimental part:
Practical method: gradient-guided greedy method

F We use sentence paraphrasing to expand the space of attacks
Experiments verified on three different tasks
Human Evaluation

F Adversarial training
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Q & A

Thank you!
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Methodology: Joint sentence and word paraphrasing attack

Pick up sentence candidate set from semantic similarity.
Greedily conduct sentence level paraphrasing attacks.
I’ve always run jigdo-lite against my own mirror. It provides two
things: 1) Proves I can you are able to build the ISOs from what I
have mirrored locally. 2) Doesn’t waste additional bandwidth. · · ·
Pick up word candidate set from semantic and syntactic similarity.
Greedily conduct word level paraphrasing attacks
I’ve always run jigdo-lite against my own mirror. It provides offers
two things: 1) Proves I can you are able to build the ISOs from what
I have mirrored locally. 2) Doesn’t waste additional bandwidth. As
long as the checksums match what is provided from the official
ISO image masters site, I don’t see what the difference would be.
Anyone else do this? :)^_^
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Experiment: Joint sentence and word paraphrasing attack

Table: Experiments on Word-level CNN with 5% dropout. [1] allows 50% word
replacement while we only allow 20% word paraphrasing and 20% sentence paraphrasing.

Accuracy Origin ADV (ours) ADV [1]

News 93.1% 35.4% 71.0%
Trec07p 99.1% 48.6% 64.5%
Yelp 93.6% 23.1% 39.0%

[1] V. Kuleshov, S. Thakoor, T. Lau, and S. Ermon, “Adversarial examples
for natural language classification problems.”
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Experiments: Adversarial Training

Table: Performance of adversarial training.

Dataset News Trec07p Yelp

Test (before) 93.1% 99.1% 93.6%
Test (after) 93.8% 99.2% 94.9%

ADV (before) 35.4% 48.6% 23.1%
ADV (after) 40.0% 54.2% 44.4%
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