Distribution-aware Data and Model Pruning

Qi Lei

Courant Institute & CDS, NYU

Nov, 2024

with Yijun Dong, Jianwei Li, Xiang Pan, Hoang Phan

https://arxiv.org/abs/2407.06120 https://arxiv.org/abs/2407.19126

Qi Lei (Courant Institute & CDS, NYU) Distribution-aware Data and Model Pruning

Nov, 2024

1/36

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

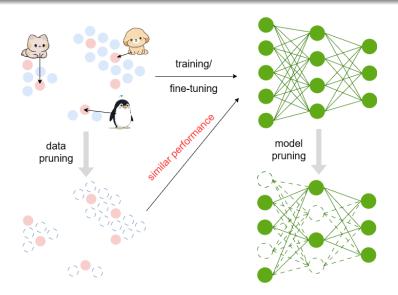
Why? Growing data and model sizes lead to increasing computational demands in both training and inference time.

- Why? Growing data and model sizes lead to increasing computational demands in both training and inference time.
- What? Want a smaller model and data size: to save energy, memory, and time without compromising performance.

- Why? Growing data and model sizes lead to increasing computational demands in both training and inference time.
- What? Want a smaller model and data size: to save energy, memory, and time without compromising performance.
 - How? Need efficient model and data pruning strategies.

Motivation

Illustration



▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

э

Outline

🗿 Data Pruning

- Data Selection for Fine-tuning
- Variance-Bias trade-off in Low Intrinsic Dimension
- Sketchy moment matching

3 (Language) Model Pruning

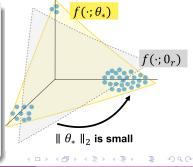
- Prior work
- Methodology
- Results

Conclusions

Data Selection for Finetuning

- ▶ Large full dataset $X = [x_1, \cdots, x_N]^\top \subset \mathcal{X}^N$, drawn i.i.d. from unknown distribution
- Finetuning function class $\mathcal{F} = \{f(\cdot; \theta) : \mathcal{X} \to \mathbb{R} \mid \theta \in \Theta\}$ with parameters $\Theta \subset \mathbb{R}^r$
- Pre-trained initialization 0_r (without loss of generality)
- Ground truth $\theta^* \in \Theta$ such that $\mathbb{E}[y|x] = f(x; \theta^*)$ and $\mathbb{V}[y|x] \le \sigma^2$
- Finetuning dynamics fall in the kernel regime: $f(x; \theta) \approx f(x; 0_r) + \nabla_{\theta} f(x; 0_r)^{\top} \theta$
- With suitable pre-trained initialization (i.e. f(·, 0_r) is close to f(·, θ*)), ||θ*||₂ is small

• Let
$$G = \nabla_{\theta} f(X; 0_r) \in \mathbb{R}^{N \times r}$$
 and $G_S = \nabla_{\theta} f(X_S; 0_r) \in \mathbb{R}^{n \times r}$



Nov, 2024

Data Selection for Finetuning in Kernel Regime

Select a small coreset $(X_S, y_S) \subset \mathcal{X}^n \times \mathbb{R}^n$ of size n indexed by $S \subset [N]$ such that:

$$\theta_S = \arg\min_{\theta \in \Theta} \frac{1}{n} \|G\theta - y_S\|_2^2 + \alpha \|\theta\|_2^2$$

Low-dimensional data selection: r ≤ n, α = 0 (linear regression)
 High-dimensional data selection: r > n, α > 0 (ridge regression)

Aim to control excess risk:

$$ER(\theta_S) = \|\theta_S - \theta^*\|_{\Sigma}^2,$$

where $\Sigma = \mathbb{E}_{x \sim P}[\nabla_{\theta} f(x; 0_r) \nabla_{\theta} f(x; 0_r)^{\top}] \in \mathbb{R}^{r \times r}$

Consider fixed design for simplicity:

- $\blacktriangleright \Sigma = \mathbb{E}_{x \sim P}[\nabla_{\theta} f(x; 0_r) \nabla_{\theta} f(x; 0_r)^{\top}] = G^{\top} G/N$
- ▶ Low-dimensional data selection: ${\rm rank}(G_S) = r \leq n$ such that $\Sigma_S = G_S^\top G_S / n \succ 0$

V(ariance)-optimality characterizes generalization:

- $\blacktriangleright \mathbb{E}[ER(\theta_S)] \leq \frac{\sigma^2}{n} \mathrm{tr}(\Sigma \Sigma_S^{-1})$
- If $\Sigma \preceq c_S \Sigma_S$ for some $c_S \ge \frac{n}{N}$, then $\mathbb{E}[ER(\theta_S)] \le c_S \sigma^2 \frac{r}{n}$

Nov, 2024

Uniform Sampling Result

Uniform sampling achieves nearly optimal sample complexity in low dimension:

Theorem

Assuming $\|\nabla_{\theta} f(\cdot; 0_r)\|_2 \leq B$ and $\Sigma \succeq \gamma I_r$. With probability $\geq 1 - \delta$, X_S sampled uniformly from X satisfies $\Sigma \preceq c_S \Sigma_S$ for any $c_S > 1$ when

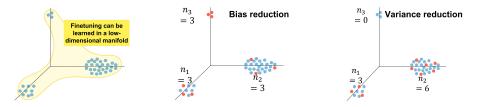
$$n \gtrsim \frac{B^4}{\gamma^2 (1 - c_S^{-1})^2} (r + \log(1/\delta))$$

Uniform sampling is near-optimal when r < n? What else to expect?

Can the low intrinsic dimension of finetuning be leveraged for high-dimensional data selection (r > n)?

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

Thought Experiment and Prior work



- Bias reduction (low-rank approximation for data matrix): adaptive sampling, k-center greedy
- Variance reduction (V-optimality): uniform sampling, Herding
- ► Bias-variance trade-off: truncated leverage score, ridge leverage score
- data pruning/selection
 - label-dependent: based on training dynamics
 - label-free: based on geometric properties

With Low Intrinsic Dimension: Variance-Bias Trade-off

▶ High-dimensional data selection: rank $(G_S) \le n < r$ such that $\Sigma_S = G_S^\top G_S / n$ is low-rank

Assumption (Low intrinsic dimension)

For $\Sigma = G^{\top}G/N$, let

$$\mathfrak{r} = \min\{t \in [r] \mid \mathsf{tr}(\Sigma - \langle \Sigma \rangle_t) \leq \mathsf{tr}(\Sigma)/N\}$$

be the intrinsic dimension of the learning problem. Assume $\mathfrak{r} \ll \min\{N,r\}$

Necessity of low intrinsic dimension: if all r directions in Σ are equally important, E[ER(θ_S)] ≥ r − n

A (1) < A (1) < A (1) </p>

Variance-Bias Tradeoff Theorem

Theorem (Variance-bias tradeoff)

Given a coreset of size S, let P_S be the orthogonal projector onto any subspace $S \subset \text{Range}(\Sigma_S)$, and $P_S^{\perp} = I_r - P_S$. There exists $\alpha > 0$ such that:

$$\mathbb{E}[ER(\theta_S)] \leq \min_{\mathcal{S} \subset \mathsf{Range}(\Sigma_S)} \underbrace{\frac{2\sigma^2}{n} tr(\Sigma(P_{\mathcal{S}}\Sigma_S P_{\mathcal{S}})^{\dagger})}_{\text{variance}} + \underbrace{2tr(\Sigma P_{\mathcal{S}}^{\perp}) \|\theta^*\|_2^2}_{\text{bias}}$$

- ► Variance: excludes the eigen-subspace corresponding to small eigenvalues of ∑_S
- Bias: covers the eigen-subspace corresponding to large eigenvalues Σ

くぼう くほう くほう

Sample Efficiency

Corollary (Exploitation + exploration)

Given $S \subset [N]$, for $S \subseteq \mathsf{Range}(\Sigma_S)$ with $\mathsf{rank}(P_S) \approx \mathfrak{r}$, if:

Variance is controlled by exploiting information in S: $P_{\mathcal{S}}(c_S \Sigma_S - \Sigma) P_{\mathcal{S}} \succeq 0$ for some $c_S \ge n/N$

• Bias is controlled by exploring $\operatorname{Range}(\Sigma)$: $\operatorname{tr}(\Sigma P_{\mathcal{S}}^{\perp}) \leq \frac{N}{n}\operatorname{tr}(\Sigma - \langle \Sigma \rangle_{\mathfrak{r}})$ Then,

$$\mathbb{E}[ER(\theta_S)] \le \text{variance} + \text{bias} \lesssim \frac{1}{n} (c_S \sigma^2 \mathfrak{r} + tr(\Sigma) \|\theta^*\|_2^2)$$

Sample efficiency: With suitable selection of S ⊂ [N] the sample complexity of finetuning is linear in the intrinsic dimension v, independent of the (potentially high) ambient parameter dimension r.

Sample Efficiency

Corollary (Exploitation + exploration)

Given $S \subset [N]$, for $S \subseteq \mathsf{Range}(\Sigma_S)$ with $\mathsf{rank}(P_S) \approx \mathfrak{r}$, if:

Variance is controlled by exploiting information in S: $P_{\mathcal{S}}(c_S \Sigma_S - \Sigma) P_{\mathcal{S}} \succeq 0$ for some $c_S \ge n/N$

• Bias is controlled by exploring $\operatorname{Range}(\Sigma)$: $\operatorname{tr}(\Sigma P_{\mathcal{S}}^{\perp}) \leq \frac{N}{n}\operatorname{tr}(\Sigma - \langle \Sigma \rangle_{\mathfrak{r}})$ Then,

$$\mathbb{E}[ER(\theta_S)] \leq \text{variance} + \text{bias} \lesssim \frac{1}{n} (c_S \sigma^2 \mathfrak{r} + tr(\Sigma) \|\theta^*\|_2^2)$$

- Sample efficiency: With suitable selection of S ⊂ [N] the sample complexity of finetuning is linear in the intrinsic dimension r, independent of the (potentially high) ambient parameter dimension r.
- How to explore the intrinsic low-dimensional structure efficiently for data selection?

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

Gradient Sketching

- Gradient sketching: Randomly projecting the high-dimensional gradients $G = \nabla_{\theta} f(X; 0_r) \in \mathbb{R}^{N \times r}$ to a lower-dimension $m = O(\mathfrak{r}) \ll r$ via a Johnson-Lindenstrauss transform (JLT)
- ▶ Common JLT: a Gaussian random matrix $\Gamma \in \mathbb{R}^{r \times m}$ with i.i.d entries $\Gamma_{ij} \sim \mathcal{N}(0, 1/m)$

Theorem (Gradient sketching)

Under mild conditions, $\tilde{\Sigma}, \tilde{\Sigma}_S \in \mathbb{R}^{m \times m}$ being the sketched covariance of original data and selected data, $m = 11\mathfrak{r}$, there exists $\alpha > 0$ such that:

$$\mathbb{E}[ER(\theta_S)] \lesssim \underbrace{\frac{\sigma^2}{n} \operatorname{tr}(\tilde{\Sigma}(\tilde{\Sigma}_S)^{\dagger})}_{\text{variance}} + \underbrace{\frac{\sigma^2}{n} \frac{1}{m\gamma_S} \|\tilde{\Sigma}(\tilde{\Sigma}_S)^{\dagger}\|_2 \operatorname{tr}(\Sigma)}_{\text{sketching error}} + \underbrace{\frac{1}{n} \|\tilde{\Sigma}(\tilde{\Sigma}_S)^{\dagger}\|_2 \operatorname{tr}(\Sigma) \|\theta^*\|_2^2}_{\text{bias}}$$

If
$$\tilde{\Sigma} \leq c_S \tilde{\Sigma}_S$$
 and $m = \max\{\sqrt{\textit{tr}(\Sigma)/\gamma_S}, 11\mathfrak{r}\},$

$$\mathbb{E}[ER(\theta_S)] \lesssim \frac{c_S}{n} (\sigma^2 m + tr(\Sigma) \|\theta_*\|^2).$$

Sketchy moment matching

Sketchy Moment Matching (SkMM)

Gradient sketching

- Draw a (fast) JLT $\Gamma \in \mathbb{R}^{r \times m}$
- ► Sketch the gradients $\tilde{G} = \nabla_{\theta} f(X; 0_r) \Gamma \in \mathbb{R}^{N \times m}$

Moment matching

 \Rightarrow

- Spectral decomposition $\tilde{\Sigma} = \tilde{G}^{\top} \tilde{G} / N = V \Lambda V^{\top}$
- Initialize $s = [s_1, \ldots, s_N]$ with $s_i = 1/n$ for uniformly sampled n
- Sample size-n coreset according to optimization:

$$\begin{split} \min_{s} \min_{\gamma \in \mathbb{R}^m} \sum_{j=1}^m (v_j^\top \tilde{G}^\top \mathsf{diag}(s) \tilde{G} v_j - \gamma_j \lambda_j)^2 \\ \text{s.t.} \ s \in \Delta_N, \gamma_j \geq 1/c_S \ \forall j \in [m] \end{split}$$

$$\begin{cases} \text{Relaxation of } 1/c_S \tilde{\Sigma} \lesssim \tilde{\Sigma}_S : \\ \lambda_j/c_S \le v_j^T \tilde{G}^T \text{diag}(s) \tilde{G} v_j \end{cases}$$

Sketchy moment matching

Efficiency of SkMM

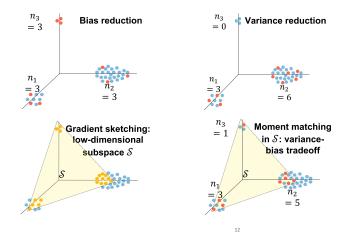
Recall $m \ll \min\{N, r\}$:

- Gradient sketching is parallelizable with input-sparsity time:
 - ► O(nnz(G)m) for Gaussian embedding
 - ► O(nnz(G) log m) for Fast JLT (sparse sign)

Moment matching takes:

- $O(m^3)$ for spectral decomposition
- O(Nm) per iteration for optimization

SkMM simultaneously controls variance and bias



通 ト イ ヨ ト イ ヨ ト

Synthetic Experiments (Regression)

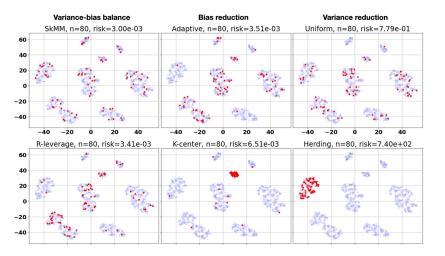
Synthetic Data (Regression)

- Gaussian mixture model (GMM)
- ▶ N = 2000, r = 2400 > N
- Well-separated clusters of random sizes
- Grid search for nearly optimal α

Baselines:

- Herding
- Uniform sampling
- K-center greedy
- Adaptive sampling/random pivoting
- T(runcated)/R(idge) leverage score sampling

Synthetic results



(日)

Real Experiments (Classification)

- StanfordCar dataset
- 196 imbalanced classes
- ▶ N = 16,185 images
- Linear probing: CLIP-pre-trained ViT (r = 100, 548)
- Last-two-layer finetuning: ImageNet-pre-trained ResNet18 (r = 2, 459, 844)

SkMM for classification: Liner Probing

Table 2: Accuracy and F1 score (%) of LP over CLIP on StanfordCars								
	n	2000	2500	3000	3500	4000		
Uniform Sampling	Acc F1	$\begin{array}{c} 67.63 \pm 0.17 \\ 64.54 \pm 0.18 \end{array}$	$\begin{array}{c} 70.59 \pm 0.19 \\ 67.79 \pm 0.23 \end{array}$	$\begin{array}{c} 72.49 \pm 0.19 \\ 70.00 \pm 0.20 \end{array}$	$\begin{array}{c} 74.16 \pm 0.22 \\ 71.77 \pm 0.23 \end{array}$	$\begin{array}{c} 75.40 \pm 0.16 \\ 73.14 \pm 0.12 \end{array}$		
Herding 90	Acc F1	$\begin{array}{c} 67.22 \pm 0.16 \\ 64.07 \pm 0.23 \end{array}$	$\begin{array}{c} 71.02 \pm 0.13 \\ 68.28 \pm 0.15 \end{array}$	$\begin{array}{c} 73.17 \pm 0.22 \\ 70.64 \pm 0.28 \end{array}$	$\begin{array}{c} 74.64 \pm 0.18 \\ 72.22 \pm 0.26 \end{array}$	$\begin{array}{c} 75.71 \pm 0.29 \\ 73.26 \pm 0.39 \end{array}$		
Contextual Diversity 1	Acc F1	$\begin{array}{c} 67.64 \pm 0.13 \\ 64.51 \pm 0.17 \end{array}$	$\begin{array}{c} 70.82 \pm 0.23 \\ 68.18 \pm 0.25 \end{array}$	$\begin{array}{c} 72.66 \pm 0.12 \\ 70.05 \pm 0.11 \end{array}$	$\begin{array}{c} 74.46 \pm 0.17 \\ 72.13 \pm 0.15 \end{array}$	$\begin{array}{c} 75.77 \pm 0.12 \\ 73.35 \pm 0.07 \end{array}$		
Glister 43	Acc F1	$\begin{array}{c} 67.60 \pm 0.24 \\ 64.50 \pm 0.34 \end{array}$	$\begin{array}{c} 70.85 \pm 0.27 \\ 68.07 \pm 0.38 \end{array}$	$\begin{array}{c} 73.07 \pm 0.26 \\ 70.47 \pm 0.35 \end{array}$	$\begin{array}{c} 74.63 \pm 0.21 \\ 72.18 \pm 0.25 \end{array}$	$\begin{array}{c} 76.00 \pm 0.20 \\ 73.69 \pm 0.24 \end{array}$		
GraNd 63	Acc F1	$\begin{array}{c} 67.27 \pm 0.07 \\ 64.04 \pm 0.09 \end{array}$	$\begin{array}{c} 70.38 \pm 0.07 \\ 67.48 \pm 0.09 \end{array}$	$\begin{array}{c} 72.56 \pm 0.05 \\ 69.81 \pm 0.08 \end{array}$	$\begin{array}{c} 74.67 \pm 0.06 \\ 72.13 \pm 0.05 \end{array}$	$\begin{array}{c} 75.77 \pm 0.12 \\ 73.44 \pm 0.13 \end{array}$		
Forgetting [79]	Acc F1	$\begin{array}{c} 67.59 \pm 0.10 \\ 64.85 \pm 0.13 \end{array}$	$\begin{array}{c} 70.99 \pm 0.05 \\ 68.53 \pm 0.07 \end{array}$	$\begin{array}{c} 72.54 \pm 0.07 \\ 70.30 \pm 0.05 \end{array}$	$\begin{array}{c} 74.81 \pm 0.05 \\ 72.59 \pm 0.04 \end{array}$	$\begin{array}{c} 75.74 \pm 0.01 \\ 73.74 \pm 0.02 \end{array}$		
DeepFool 59	Acc F1	$\begin{array}{c} 67.77 \pm 0.29 \\ 64.16 \pm 0.68 \end{array}$	$\begin{array}{c} 70.73 \pm 0.22 \\ 68.49 \pm 0.53 \end{array}$	$\begin{array}{c} 73.24 \pm 0.22 \\ 70.93 \pm 0.32 \end{array}$	$\begin{array}{c} 74.57 \pm 0.23 \\ 72.44 \pm 0.27 \end{array}$	$\begin{array}{c} 75.71 \pm 0.15 \\ 73.79 \pm 0.15 \end{array}$		
Entropy 19	Acc F1	$\begin{array}{c} 67.95 \pm 0.11 \\ 64.55 \pm 0.10 \end{array}$	$\begin{array}{c} 71.00 \pm 0.10 \\ 67.95 \pm 0.12 \end{array}$	$\begin{array}{c} 73.28 \pm 0.10 \\ 70.68 \pm 0.12 \end{array}$	$\begin{array}{c} 75.02 \pm 0.08 \\ 72.46 \pm 0.12 \end{array}$	$\begin{array}{c} 75.82 \pm 0.06 \\ 73.29 \pm 0.04 \end{array}$		
Margin 19	Acc F1	$\begin{array}{c} 67.53 \pm 0.14 \\ 64.16 \pm 0.15 \end{array}$	$\begin{array}{c} 71.19 \pm 0.09 \\ 68.33 \pm 0.14 \end{array}$	$\begin{array}{c} 73.09 \pm 0.14 \\ 70.37 \pm 0.17 \end{array}$	$\begin{array}{c} 74.66 \pm 0.11 \\ 72.03 \pm 0.11 \end{array}$	$\begin{array}{c} 75.57 \pm 0.13 \\ 73.14 \pm 0.20 \end{array}$		
Least Confidence [19]	Acc F1	$\begin{array}{c} 67.68 \pm 0.11 \\ 64.09 \pm 0.20 \end{array}$	$\begin{array}{c} 70.99 \pm 0.14 \\ 68.03 \pm 0.20 \end{array}$	$\begin{array}{c} 73.04 \pm 0.05 \\ 70.30 \pm 0.07 \end{array}$	$\begin{array}{c} 74.65 \pm 0.09 \\ 72.02 \pm 0.10 \end{array}$	$\begin{array}{c} 75.58 \pm 0.08 \\ 73.15 \pm 0.12 \end{array}$		
SkMM-LP	Acc F1	$\begin{array}{c} 68.27 \pm 0.03 \\ 65.29 \pm 0.03 \end{array}$	$\begin{array}{c} 71.53 \pm 0.05 \\ 68.75 \pm 0.06 \end{array}$	$\begin{array}{c} \textbf{73.61} \pm \textbf{0.02} \\ \textbf{71.14} \pm \textbf{0.03} \end{array}$	$\begin{array}{c}\textbf{75.12} \pm \textbf{0.01} \\ \textbf{72.64} \pm \textbf{0.02} \end{array}$	$\begin{array}{c}\textbf{76.34}\pm\textbf{0.02}\\\textbf{74.02}\pm\textbf{0.10}\end{array}$		

Table 2: Accuracy and F1 score (%) of LP over CLIP on StanfordCars

StanfordCar dataset

196 imbalanced classes

Linear probing (LP)

CLIP-pre-trained ViT

•
$$r = 100,548$$

Last-two-layer finetuning (FT)

ImageNet-pre-trained ResNet18

•
$$r = 2,459,844$$

<日

<</p>

э

SkMM for Classification: Last-two-layer Finetuning

	n	2000	2500	3000	3500	4000	
Uniform Sampling	Acc F1	$\begin{array}{c} 29.19 \pm 0.37 \\ 26.14 \pm 0.39 \end{array}$	$\begin{array}{c} 32.83 \pm 0.19 \\ 29.91 \pm 0.16 \end{array}$	$\begin{array}{c} 35.69 \pm 0.35 \\ 32.80 \pm 0.37 \end{array}$	$\begin{array}{c} 38.31 \pm 0.16 \\ 35.38 \pm 0.19 \end{array}$	$\begin{array}{c} 40.35 \pm 0.26 \\ 37.51 \pm 0.23 \end{array}$	StanfordCar dataset
Herding 90	Acc F1	$\begin{array}{c} 29.19 \pm 0.21 \\ 25.90 \pm 0.24 \end{array}$	$\begin{array}{c} 32.42 \pm 0.16 \\ 29.48 \pm 0.23 \end{array}$	$\begin{array}{c} 35.83 \pm 0.24 \\ 32.89 \pm 0.27 \end{array}$	$\begin{array}{c} 38.30 \pm 0.19 \\ 35.50 \pm 0.22 \end{array}$	$\begin{array}{c} 40.51 \pm 0.19 \\ 37.56 \pm 0.21 \end{array}$	 196 imbalanced classes
Contextual Diversity 🕕	Acc F1	$\begin{array}{c} 28.50 \pm 0.34 \\ 25.65 \pm 0.40 \end{array}$	$\begin{array}{c} 32.66 \pm 0.27 \\ 29.79 \pm 0.29 \end{array}$	$\begin{array}{c} 35.67 \pm 0.32 \\ 32.86 \pm 0.31 \end{array}$	$\begin{array}{c} 38.31 \pm 0.15 \\ 35.55 \pm 0.14 \end{array}$	$\begin{array}{c} 40.53 \pm 0.18 \\ 37.81 \pm 0.23 \end{array}$	 • N = 16.185 images
Glister [43]	Acc F1	$\begin{array}{c} 29.16 \pm 0.26 \\ 26.33 \pm 0.19 \end{array}$	$\begin{array}{c} 32.91 \pm 0.19 \\ 30.05 \pm 0.28 \end{array}$	$\begin{array}{c} 36.03\pm0.20\\ \textbf{33.26}\pm\textbf{0.18} \end{array}$	$\begin{array}{c} 38.16 \pm 0.12 \\ 35.41 \pm 0.14 \end{array}$	$\begin{array}{c} 40.47 \pm 0.16 \\ 37.63 \pm 0.17 \end{array}$	Linear probing (LP)
GraNd 63	Acc F1	$\begin{array}{c} 28.59 \pm 0.17 \\ 25.66 \pm 0.15 \end{array}$	$\begin{array}{c} 32.67 \pm 0.20 \\ 29.70 \pm 0.22 \end{array}$	$\begin{array}{c} 35.83 \pm 0.16 \\ 32.76 \pm 0.16 \end{array}$	$\begin{array}{c} 38.58 \pm 0.15 \\ 35.72 \pm 0.15 \end{array}$	$\begin{array}{c} 40.70 \pm 0.11 \\ 37.83 \pm 0.11 \end{array}$	CLIP-pre-trained ViT
Forgetting [79]	Acc F1	$\begin{array}{c} 28.61 \pm 0.31 \\ 25.64 \pm 0.25 \end{array}$	$\begin{array}{c} 32.48 \pm 0.28 \\ 29.58 \pm 0.30 \end{array}$	$\begin{array}{c} 35.18 \pm 0.24 \\ 32.38 \pm 0.20 \end{array}$	$\begin{array}{c} 37.78 \pm 0.22 \\ 35.16 \pm 0.18 \end{array}$	$\begin{array}{c} 40.24 \pm 0.13 \\ 37.41 \pm 0.14 \end{array}$	
DeepFool 59	Acc F1	$\begin{array}{c} 24.97 \pm 0.20 \\ 22.11 \pm 0.11 \end{array}$	$\begin{array}{c} 29.02 \pm 0.17 \\ 26.08 \pm 0.29 \end{array}$	$\begin{array}{c} 32.60 \pm 0.18 \\ 29.83 \pm 0.27 \end{array}$	$\begin{array}{c} 35.59 \pm 0.24 \\ 32.92 \pm 0.33 \end{array}$	$\begin{array}{c} 38.20 \pm 0.22 \\ 35.47 \pm 0.22 \end{array}$	• $r = 100,548$
Entropy [19]	Acc F1	$\begin{array}{c} 28.87 \pm 0.13 \\ 25.95 \pm 0.17 \end{array}$	$\begin{array}{c} 32.84 \pm 0.20 \\ 30.03 \pm 0.17 \end{array}$	$\begin{array}{c} 35.64 \pm 0.20 \\ 32.85 \pm 0.23 \end{array}$	$\begin{array}{c} 37.96 \pm 0.11 \\ 35.19 \pm 0.12 \end{array}$	$\begin{array}{c} 40.29 \pm 0.27 \\ 37.33 \pm 0.34 \end{array}$	Last-two-layer finetuning (FT)
Margin 19	Acc F1	$\begin{array}{c} 29.18 \pm 0.12 \\ 26.15 \pm 0.12 \end{array}$	$\begin{array}{c} 32.73 \pm 0.15 \\ 29.66 \pm 0.05 \end{array}$	$\begin{array}{c} 35.67 \pm 0.30 \\ 32.86 \pm 0.30 \end{array}$	$\begin{array}{c} 38.27 \pm 0.20 \\ 35.61 \pm 0.17 \end{array}$	$\begin{array}{c} 40.58 \pm 0.06 \\ 37.77 \pm 0.07 \end{array}$	 ImageNet-pre-trained ResNet
Least Confidence [19]	Acc F1	$\begin{array}{c} 29.05 \pm 0.07 \\ 26.18 \pm 0.04 \end{array}$	$\begin{array}{c} 32.88 \pm 0.13 \\ 30.03 \pm 0.14 \end{array}$	$\begin{array}{c} 35.66 \pm 0.18 \\ 32.79 \pm 0.15 \end{array}$	$\begin{array}{c} 38.25 \pm 0.20 \\ 35.42 \pm 0.16 \end{array}$	$\begin{array}{c} 39.91 \pm 0.09 \\ 37.14 \pm 0.12 \end{array}$	• $r = 2,459,844$
SkMM-FT	Acc F1	$\begin{array}{c} \textbf{29.44} \pm \textbf{0.09} \\ \textbf{26.71} \pm \textbf{0.10} \end{array}$	$\begin{array}{c} 33.48 \pm 0.04 \\ 30.75 \pm 0.05 \end{array}$	$\begin{array}{c}\textbf{36.11} \pm \textbf{0.12} \\ \textbf{33.24} \pm \textbf{0.05} \end{array}$	$\begin{array}{c} 39.18 \pm 0.03 \\ 36.38 \pm 0.05 \end{array}$	$\begin{array}{c} 41.77 \pm 0.07 \\ 39.07 \pm 0.10 \end{array}$	

Table 3: Accuracy and F1 score (%) of FT over (the last two layers of) ResNet18 on StanfordCars

< 日 > < 同 > < 三 > < 三 >

ResNet18

э

Conclusion

► A rigorous generalization analysis on data selection for fine-tuning

- Low-dimensional data selection: variance reduction (V-optimality)
- High-dimensional data selection: variance-bias tradeoff
- ► **Gradient sketching** provably finds a low-dimensional parameter subspace S with a small bias
 - \blacktriangleright Reducing variance over ${\mathcal S}$ preserves the fast-rate generalization $O(\dim({\mathcal S})/n)$
- SkMM —a scalable two-stage data selection method for finetuning that simultaneously:
 - Explores the high-dimensional parameter space via gradient sketching
 - Exploits the information in the low-dimensional subspace via moment matching

Future direction: streaming data

通 ト イ ヨ ト イ ヨ ト

Outline

Data Pruning

- Data Selection for Fine-tuning
- Variance-Bias trade-off in Low Intrinsic Dimension
- Sketchy moment matching

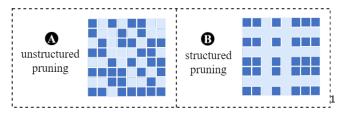
(Language) Model Pruning

- Prior work
- Methodology
- Results

Conclusions

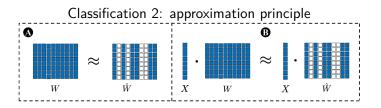
Prior work

Classification 1: model structure preservation



- A: better performance preservation
- B: hardware compatibility; efficient at inference time

 $^{-1}$ Pruning masks: Dark blue is kept weight; light blue is pruned out weight \rightarrow = -9 and



- A: Preserving model weights
- B: Preserving model outputs

Classification 3: Retraining requirements (Computational costs)

- A: Iterative pruning (High)
- B: Finetuning-required pruning (Median)
- C: One-shot pruning (Relatively Low) Value-based \ll Gradient-based \ll Hessian-based

- Iterative pruning Unstructured pruning Gradient/Hessian-based Weight preservation
- Single-shot pruning ==>
- Structured pruning ==>
- ==> Value-based pruning
- ==> Output preservation

25 / 36

Iterative pruning

Unstructured pruning Gradient/Hessian-based Weight preservation

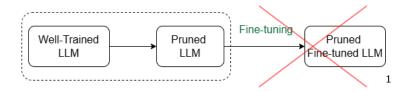
==> Single-shot pruning

- ==> Structured pruning
- ==> Value-based pruning
- ==> Output preservation

One-shot Pruning

Qi Lei (Courant Institute & CDS, NYU) Distribution-aware Data and Model Pruning

One-shot Pruning

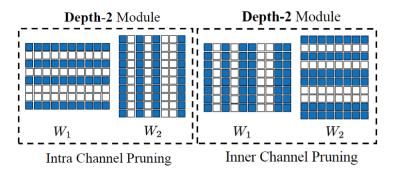


Qi Lei (Courant Institute & CDS, NYU) Distribution-aware Data and Model Pruning

- Iterative pruning==>Unstructured pruning==>Gradient/Hessian-based==>Weight preservation==>
 - ==> Single-shot pruning ==> Structured pruning
 - => Structured pruning
 - => Value-based pruning
 - ==> Output preservation

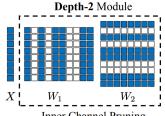
Pruning Unit: Depth-2 Units

Two pruning strategies:



Depth-2 Unit 1: Feedforward Layer

(Language) Model Pruning



Methodology

Inner Channel Pruning

Depth-1 magnitude-based pruning: $||(W_1)_{:,i}||$ Depth-2 magnitude-based pruning: $||(W_1)_{:,i}|| ||(W_2)_{i,:}||$ Ours:

 $||(W_2)_{i::}||^2 (W_1)^\top_{i:i} \Sigma(W_1)_{:,i}$

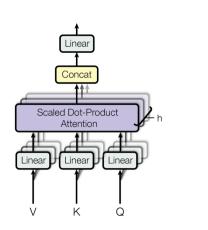
Rational: magnitude of each slice $\mathbb{E}[||(W_2)_{i,:}||^2 \sigma^2((W_1)_{\cdot,i}^\top X)]$ $= \frac{1}{2} \| (W_2)_{i,:} \|^2 (W_1)_{\cdot i}^\top \Sigma (W_1)_{:,i}.$

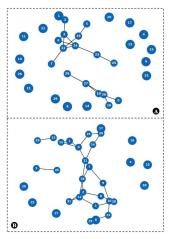
(Take input X as a normal distribution with covariance Σ , σ is ReLU.)

(Language) Model Pruning

Methodology

Depth-2 Unit 2: Attention Layer





multi-head attention

32 attention heads from Block 4&5 of Llama-7 Connected if $D(h_i, h_j) \ge 0.2$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- Iterative pruning Unstructured pruning Gradient/Hessian-based Weight preservation
- ==> Single-shot pruning ==> Structured pruning ==> Value-based pruning
- ==> Output preservation

Layer-wise Recovery

Motivation:

- ► For gradient-based pruning ==> global criterion ==> $f(\cdot; W + \Delta W) \approx f(\cdot; W) + \nabla_W f(\cdot, W) \Delta W$
- For Value-based pruning ==> local criterion for each layer ==> error will compound layer by layer (if each layer is pruned independently)

Methodology

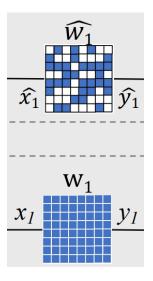
Layer-wise Recovery from Targeted Value

We will apply the above pruning strategy on a recovered weight \hat{W}_l :

$$\hat{W}_l \leftarrow \arg\min_W \|W\hat{X}_l - Y_l\|,$$

 \hat{X}_l is the updated input due to pruned weights $\hat{W}_1,\cdots \hat{W}_{l-1},~Y_l$ is the targeted output. ^

^a[Li, L, Cheng, Xu, 2023] https://arxiv.org/abs/2310.13191



Nov, 2024

Results

Methods	WikiText2	РТВ↓	BoolQ	PIQA	HS	WG	ARC-e	ARC-c	OBQA	Ave ↑
Dense	12.62	22.14	73.18	78.35	72.99	67.01	67.45	41.38	42.4	63.5
Data Free Pruni	-		10.10	10.00	12.55	01.01	01110	11.00		00.0
Random	23.02	40.19	46.21	71.33	59.35	56.51	47.97	32.0	36.30	49.95
L1 norm	179.02	311.75	51.28	60.22	43.14	52.01	36.53	27.89	30.8	43.12
L2 norm	582.41	1022.17	60.18	58.54	37.04	53.27	32.91	27.56	29.8	42.76
Ours	21.76	34.3	63.51	72.63	56.54	54.46	51.68	33.79	36.4	52.72
Ours (RC)	20.32	33.42	64.17	72.67	58.43	57.29	53.32	34.15	37.23	53.89
Data Dependent	Data Dependent Pruning									
	Training-Aware Pruning									
LLM-P.Vec	22.28	41.78	61.44	71.71	57.27	54.22	55.77	33.96	38.4	53.52
LLM-P.E1	19.09	34.21	57.06	75.68	66.8	59.83	60.94	36.52	40.0	56.69
LLM-P.E2	19.77	36.66	59.39	75.57	65.34	61.33	59.18	37.12	39.8	56.82
Inference-Aware Pruning										
Wanda-sp	27.45	49.52	64.16	75.21	<u>68.62</u>	62.27	59.68	36.68	39.2	57.97
Ours (Σ)	17.48	30.04	66.48	75.78	67.73	62.27	61.4	35.49	39.6	58.39
Ours (Σ ;RC)	17.90	31.23	70.12	<u>76.86</u>	68.55	<u>65.76</u>	<u>64.23</u>	<u>38.54</u>	<u>40.5</u>	<u>60.65</u>
Retraining-required Pruning										
LLM-P. LoRA	<u>17.37</u>	30.39	69.54	76.44	68.11	65.11	63.43	37.88	40.0	60.07

Model: LLaMA-7B (20% sparsity) First two datasets: zero-shot perplexity (PPL) analysis Next 7 datasets: zero-shot task classification

Nov, 2024

- Identifying inherent pruning structure: depth-2 units & attention heads
- Designing effective pruning criterion: distribution-aware value-based pruning
- Low-computational performance recovery technique: avoid error compound

Conclusions

Conclusions

- Identifying inherent pruning structure: depth-2 units & attention heads
- Designing effective pruning criterion: distribution-aware value-based pruning
- Low-computational performance recovery technique: avoid error compound

Data and Model Pruning

- distribution-aware and greedy selection
 - Data pruning: preserving features in the low intrinsic dimension
 - Model pruning: preserve nodes with higher contribution
- no-training required
 - Data pruning: exploring low order statistics of P_X
 - Model pruning: consider input data's distribution

Thank you!

・ロト ・四ト ・ヨト

æ