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Goal: Given a matrix A, we seek to compute its dominant eigenvector
Vi.

vy = argmax x' AT Ax (1)
[ x||=1

Computing the dominant eigenvector of a given matrix/graph is
meaningful for:
» Graph Centrality/PageRank
» Sparse PCA
» Spectral Clustering

The classic power method is still powerful in the sense of:

» Simplicity

» Small memory footprint

» Stable: being resistent to noise
We propose two coordinate-wise versions of the power method, from an
optimization viewpoint.

A brief review of the Power Method

» Given a matrix A, let its two dominant eigenvalues be A\, Ao, and its
dominant eigenvector is v. Power iteration conducts:

x"1) « normalize(Ax'") (2)
» This Is Inefficient since some coordinates converge faster than others,
e.g.,
201 0.71 0.53 0.45 0.42 0.41
A=1030|,x:|0/1] - 1080 - |081| — [0.82] — |0.82
102 0 10.27 10.36 10.39 10.40

Therefore we want to select and update important coordinates only.
» One key question: how to select the coordinates?
» Another key problem: how to choose these coordinates without too
much overhead?

Algorithm of Coordinate-wise Power Method (CPM)

MAIN IDEA: Choose k coordinates with the most potential change and
update them only.
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1. Define auxiliary parameters:
1.1 z = Ax maintained for algorithm efficiency.
1.2 Coordinate selection criterion: ¢ = -7 — x
2. Coordinate selection: let Q2 be a set containing k coordinates of ¢ with
the largest magnitude.

3. Update the new iterate x™:
Yi%{ZZTiZ’iGQ xt e 7

Xj ¢ Iyl
4. Update the auxiliary parameters with the k changes in x with O(kn)
operations.
i 2t 2+ Al(yg—xa). Z7 2|yl
z+
+ _ +
¢ = (X—I—)Tz+ X

5. Repeat 2 — 4.
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lllustration on how CPM works
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(a) lllustration on one update of CPM (b) Number of updates of each coordinate

» (a) One iteration in CPM suffices similar result with the Power Method,
but with less operations.

» (b) The unevenness of updates suggests that selecting important
coordinates saves many useless updates in the Power method.

Relation to Optimization & Coordinate selection rules

» Power method <= Alternating minimization for Rank-1 matrix
approximation:

argmin {f(x, y)=I[A- xyTHZF} (3)

xXcR,yelR
» Updating rule for Alternation minimization:
: . T
X  argmin, f(a, y) = 5%, y < argmin, f(x, §) = £,

» The following coordinate selecting rules for (3) are equivalent:
1. largest coordinate value change, denoted as |dx;|;
2. largest partial gradient (Gauss-Southwell rule), |V,f(x)]
3. largest function value decrease, |f(x + dx;e;) — f(x)|

» A simple alternation of the objective function for Rank-1 matrix
approximation for symmetric matrices:
Algorithm Compared to Objective function

Power Method  Alternating Minimization f(x,y) = ||[A— xy’
CPM Greedy Coordinate Descent f(x,y) = |[A— xy'
SGCD  Greedy Coordinate Descent f(x) = ||A— xx'|2
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Algorithm of Symmetric Greedy Coordinate Descent(SGCD)

» We also propose a new method we call Symetric Greedy Coordinate
Descent (SGCD) for symmetric matrices.
» MAIN IDEA: use greedy and exact coordinate descent on
f(x) = ||A— xxT||2.
» Main differences:
1. A different coordinate selection criterion: ¢ =
gradient of f(x))
2. A different update rule of x™ in
o+ {argmin&f(x + (o — x;)€;)) , if i € Q,
e Xj, it/ §§ (2.

X (parallel to the
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fle) » Exact update:
» Solve x;” = « such that
Vf(X -+ (Cv — x,-)e,-) —
o + pa + q = 0, where
p=x]? - x7 — a,
. g = —a,-TX + ajiX;.
r =argmine f (x + (o — x;)e;) ~ O(n) operations
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Convergence guarantees for CPM and SGCD

» For Coordinate-wise Power Method (CPM), we prove global linear
convergence for any positive semidefinite matrix A.

Convergence rate: require T = O(;2log(2))
to achieve tan 6 ,, < ¢

provided the "noise rate

2 Hc[n]—QH < A — Ao
lell -~ A T

» For the method of Symmetric Greedy Coordinate Descent (SGCD),
we prove local linear convergence:

Convergence rate: require T = O(;2%: log(2))

to achieve f(x()) — f(v) < ¢ provided x(© sufficiently close
A — Ao

- || x(0) _ <
o V1 HX V1|| S Ty

Experimental Results

» Scalability experiments between our methods compared to power
method, Lanczos method and VRPCA (Ohad Shamir, 2015)
conducted with C++ with Eigen library on one machine with 16G
memory:

» Performance on dense and synthetic dataset
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» Peformance on real and sparse dataset
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Performance on Livedournal Performance on com-Orkut Performance on web-Stanford
Dataset Livedournal com-Orkut web-Stanford
nodes 4,847,571 3,072,626 281,903
nonzero 86,220,856 234,370,166 3,985,272

» Extensions to out-of-core case:

< saco. » Existing methods can’t be easily

M applied to out-of-core dataset.

» Our methods indicate that updating
only k coordinates of iterate x still
enhance the target direction

» we can choose a k such that k rows of
data fit in memory and then fully update
the corresponding coordinates
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