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Motivation

Goal: Given a matrix A, we seek to compute its dominant eigenvector
v1:

v1 = argmax
‖x‖=1

xTATAx (1)

Computing the dominant eigenvector of a given matrix/graph is
meaningful for:

I Graph Centrality/PageRank
I Sparse PCA
I Spectral Clustering

The classic power method is still powerful in the sense of:
I Simplicity
I Small memory footprint
I Stable: being resistent to noise

We propose two coordinate-wise versions of the power method, from an
optimization viewpoint.

A brief review of the Power Method

I Given a matrix A, let its two dominant eigenvalues be λ1, λ2, and its
dominant eigenvector is v . Power iteration conducts:

x (l+1) ← normalize(Ax (l)) (2)
I This is inefficient since some coordinates converge faster than others,

e.g.,

A =

2 0 1
0 3 0
1 0 2

 ,x :

0.71
0.71

0

→
0.53
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0.27

→
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→
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→
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
Therefore we want to select and update important coordinates only.

I One key question: how to select the coordinates?
I Another key problem: how to choose these coordinates without too

much overhead?

Algorithm of Coordinate-wise Power Method (CPM)

MAIN IDEA: Choose k coordinates with the most potential change and
update them only.

1. Define auxiliary parameters:
1.1 z = Ax maintained for algorithm efficiency.
1.2 Coordinate selection criterion: c = z

xTz − x
2. Coordinate selection: let Ω be a set containing k coordinates of c with

the largest magnitude.
3. Update the new iterate x+:

yi ←
{ zi

zTz , i ∈ Ω
xi i /∈ Ω

. x+ ← y
‖y‖

.

4. Update the auxiliary parameters with the k changes in x with O(kn)
operations.

z+ ← z + AT
:,Ω(yΩ − xΩ). z+ ← z+/‖y‖.

c+ =
z+

(x+)Tz+
− x+.

5. Repeat 2− 4.

Illustration on how CPM works
 

(a) Illustration on one update of CPM (b) Number of updates of each coordinate

I (a) One iteration in CPM suffices similar result with the Power Method,
but with less operations.

I (b) The unevenness of updates suggests that selecting important
coordinates saves many useless updates in the Power method.

Relation to Optimization & Coordinate selection rules

I Power method⇐⇒ Alternating minimization for Rank-1 matrix
approximation:

argmin
x∈R,y∈R

{
f (x ,y) = ‖A− xyT‖2

F

}
(3)

I Updating rule for Alternation minimization:
x ← argminα f (α, y) = Ay

‖y‖2, y ← argminβ f (x , β) = ATx
‖x‖2,

I The following coordinate selecting rules for (3) are equivalent:
1. largest coordinate value change, denoted as |δxi|;
2. largest partial gradient (Gauss-Southwell rule), |∇if (x)|
3. largest function value decrease, |f (x + δxiei)− f (x)|

I A simple alternation of the objective function for Rank-1 matrix
approximation for symmetric matrices:

Algorithm Compared to Objective function
Power Method Alternating Minimization f (x ,y) = ‖A− xyT‖2

F
CPM Greedy Coordinate Descent f (x ,y) = ‖A− xyT‖2

F
SGCD Greedy Coordinate Descent f (x) = ‖A− xxT‖2

F

Algorithm of Symmetric Greedy Coordinate Descent(SGCD)

I We also propose a new method we call Symetric Greedy Coordinate
Descent (SGCD) for symmetric matrices.

I MAIN IDEA: use greedy and exact coordinate descent on
f (x) = ‖A− xxT‖2

F .
I Main differences:

1. A different coordinate selection criterion: c = Ax
‖x‖2 − x (parallel to the

gradient of f (x))
2. A different update rule of x+ in Ω

x+
i =

{
argminα f (x + (α− xi)ei) , if i ∈ Ω,

xi, if i /∈ Ω.

I Exact update:
I Solve x+

i = α such that
∇f (x + (α− xi)ei) =
α3 + pα + q = 0, where
p = ‖x‖2 − x2

i − aii,
q = −aT

i x + aiixi.
I O(n) operations

Convergence guarantees for CPM and SGCD

I For Coordinate-wise Power Method (CPM), we prove global linear
convergence for any positive semidefinite matrix A.

Theorem 1

Convergence rate: require T = O( λ1
λ1−λ2

log(1
ε))

to achieve tan θx (l),v1
≤ ε

provided the ”noise rate” ‖c[n]−Ω‖
‖c‖ . λ1−λ2

λ1
.

I For the method of Symmetric Greedy Coordinate Descent (SGCD),
we prove local linear convergence:

Theorem 2

Convergence rate: require T = O( λ1
λ1−λ2

log(1
ε))

to achieve f (x (l))− f (v) ≤ ε provided x (0) sufficiently close
to v1: ‖x (0) − v1‖ . λ1−λ2√

λ1

Experimental Results

I Scalability experiments between our methods compared to power
method, Lanczos method and VRPCA (Ohad Shamir, 2015)
conducted with C++ with Eigen library on one machine with 16G
memory:

I Performance on dense and synthetic dataset
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I Peformance on real and sparse dataset
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Performance on LiveJournal Performance on com-Orkut Performance on web-Stanford

Dataset LiveJournal com-Orkut web-Stanford
# nodes 4,847,571 3,072,626 281,903

# nonzero 86,220,856 234,370,166 3,985,272

I Extensions to out-of-core case:
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I Existing methods can’t be easily
applied to out-of-core dataset.

I Our methods indicate that updating
only k coordinates of iterate x still
enhance the target direction

I we can choose a k such that k rows of
data fit in memory and then fully update
the corresponding coordinates
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