Primal-Dual Block Generalized Frank-Wolfe

Qi Lei^{*1}, Jiacheng Zhuo^{*1}, Constantine Caramanis¹, Inderjit S. Dhillon¹², and Alexandros G. Dimakis¹

^{*}Equal contribution ¹University of Texas at Austin. ²Amazon

Introduction	Theoretical Vignette 1: Input: Data matrix $A \in \mathbb{R}^{n \times d}$, iteration <i>T</i> .		Time Comparisons		
• We consider the convex-concave saddle point		Algorithm	Per Iteration Cost	Iteration Complexity $O(1)$	
problem (with constraints):	2: Initialize: $x_1 \leftarrow 0$. 3: for $t = 1, 2, \dots, T - 1$ do	Frank Wolfe AGD	$\mathcal{O}(nd)$ $\mathcal{O}(nd)$	$\frac{\mathcal{O}(\frac{1}{\epsilon})}{\mathcal{O}(\sqrt{\kappa}\log\frac{1}{\epsilon})}$	
$\min_{\boldsymbol{x}\in C\subset\mathbb{R}^d}\max_{\boldsymbol{y}\in\mathbb{R}^n}\left\{L(\boldsymbol{x},\boldsymbol{y})=f(\boldsymbol{x})+\boldsymbol{y}^{\top}A\boldsymbol{x}-g(\boldsymbol{y})\right\}$	4: Projected GD:	SVRG	$\mathcal{O}(nd)$ $\mathcal{O}(nd^{2\# iter^{3}}d)$	$\mathcal{O}((1+\kappa/n)\log\frac{1}{\epsilon})$	

• Our focus: Primal-Dual Formulation

• Primal form:

 $\min_{\boldsymbol{x}\in C} \left\{ P(\boldsymbol{x}) \equiv \frac{1}{n} \sum_{i=1}^{n} f_i(\boldsymbol{a}_i^{\top} \boldsymbol{x}) + g(\boldsymbol{x}) \right\},\$ *C* is nuclear norm ball/ ℓ_1 -ball

• This form applies to Matrix Sensing, Elastic Net, Regularized SVM, Phase Retrieval, etc.

 $\Delta x_t \leftarrow \operatorname{argmin}_{\mathsf{H}} \{ \langle \nabla f(x_t), \Delta x \rangle + \frac{\beta}{2} \eta \| \Delta x - x_t \|_2^2 \}$ $\|\Delta x\|_1 \leq \tau$

Frank-Wolfe: 5:

 $\Delta x_t \leftarrow \operatorname*{argmin}_{\|\Delta x\|_1 \le \tau} \{ \langle \nabla f(x_t), \Delta x \rangle \}$

Block Frank-Wolfe: 6:

 $\Delta x_t \leftarrow \underset{\|\Delta x\|_1 \le \tau, \|\Delta x\|_0 \le s}{\operatorname{argmin}} \left\{ \langle \nabla f(x_t), \Delta x \rangle + \frac{\beta}{2} \eta \|\Delta x - x_t\|_2^2 \right\}$ (1)7: $x_{t+1} \leftarrow (1-\eta)x_t + \eta \Delta x_t$ 8: end for

9: **Output:** x_T

Linear convergence of block FW: Let $h_t = f(\boldsymbol{x}_t) - f(\boldsymbol{x}_t)$ *f**.

 $h_t = f(x_{t-1} + \eta(\Delta - x_{t-1})) - f^*$ $\leq h_{t-1} + \eta \langle \nabla f(\boldsymbol{x}_{t-1}), \Delta - \boldsymbol{x}_{t-1} \rangle + \frac{L}{2} \eta^2 \|\Delta - \boldsymbol{x}_{t-1}\|^2$ $\leq h_{t-1} + \eta \langle \nabla f(\boldsymbol{x}_{t-1}), \boldsymbol{x}^* - \boldsymbol{x}_{t-1} \rangle + \frac{L}{2} \eta^2 \|\boldsymbol{x}^* - \boldsymbol{x}_{t-1}\|^2$ $\leq (1 - \eta + \frac{L}{\mu}\eta^2)h_{t-1}$

	$(n \epsilon^2 \alpha)$	$\mathbf{C}(\epsilon)$
STORC	$\mathcal{O}(\kappa^2 d + nd)$	$\mathcal{O}(\log \frac{1}{\epsilon})$
Ours	$\mathcal{O}(ns)$	$\mathcal{O}((1+\kappa/n)\log rac{1}{\epsilon})$

Remarks:

1. s is the sparsity of primal optimal induced by ℓ_1 constraint.

2. For algorithm and complexity for nuclear norm constraints, refer to our paper to details.

Experimental Results

Compared methods: (1) Accelerated ProjectedGradient Descent (Acc PG) (2) Frank-Wolfe algorithm (FW) (3) Stochastic Variance ReducedGradient (SVRG) (4) Stochastic Conditional Gradient Sliding (SCGS) (5) StochasticVariance-Reduced Conditional Gradient Sliding (STORC)

• Its primal-dual form:

 $\min_{\boldsymbol{x}\in C} \max_{\boldsymbol{y}} \left\{ \mathcal{L}(\boldsymbol{x}, \boldsymbol{y}) \equiv g(\boldsymbol{x}) + \frac{1}{n} \langle \boldsymbol{y}, A\boldsymbol{x} \rangle - \frac{1}{n} \sum_{i=1}^{n} f_{i}^{*}(y_{i}) \right\},$

• Its dual formulation:

rank-1 update

 $\max_{\boldsymbol{y}} \left\{ D(\boldsymbol{y}) := \min_{\boldsymbol{x} \in C} \left\{ g(\boldsymbol{x}) + \frac{1}{n} \langle \boldsymbol{y}, A \boldsymbol{x} \rangle \right\} - \frac{1}{n} \sum_{i=1}^{n} f_i^*(y_i) \right\}.$

• Our goal: design an algorithm that 1) has time costs dependent to the structural complexity (sparsity/rank) instead of the ambient dimension, 2) achieves linear convergence with Frank-Wolfe for strongly convex functions

Observations and Challenges On Frank-Wolfe algorithm

Lessons from constrained minimization problems:

Observations.

Frank-Wolfe conducts *partial updates*: 1. For ℓ_1 ball constraint, FW conducts **1-sparse** update 2. For nuclear norm ball constraint, FW conducts

Reduce Iteration Complexity from Partial Update

 $\min_{\boldsymbol{x}\in C\subset\mathbb{R}^d}\max_{\boldsymbol{y}\in\mathbb{R}^n}\left\{L(\boldsymbol{x},\boldsymbol{y})=f(\boldsymbol{x})+\boldsymbol{y}^{\top}A\boldsymbol{x}-g(\boldsymbol{y})\right\}$ (Ours) Maintain $\boldsymbol{w} = A\boldsymbol{x}$ and $\boldsymbol{z} = A^{\top}\boldsymbol{y}$. For each iteration. Cost Operation $\mathcal{O}(nd)$ 1. Compute full gradient $\partial_{\boldsymbol{x}} L = A^{\top} \boldsymbol{y} + f'(\boldsymbol{x})$ $(\text{Ours}) \Rightarrow \partial_{\boldsymbol{x}} L = \boldsymbol{z} + f'(\boldsymbol{x})$ $\Rightarrow \mathcal{O}(d)$ 2. Conduct Block FW (Eqn. (1)) on x to $\mathcal{O}(d)$ find s-sparse update Δx $\mathcal{O}(d)$ 3. Update $\boldsymbol{x}^+ \leftarrow (1 - \eta)\boldsymbol{x} + \eta \Delta \boldsymbol{x}$ 3⁺ (Ours) $\boldsymbol{w}^+ \leftarrow (1 - \eta)\boldsymbol{w} + \eta A \Delta \boldsymbol{x}$ $\mathcal{O}(sn)$ 4. Greedy block-k coordinate ascent for y $\mathcal{O}(nd)$ $\Rightarrow \mathcal{O}(kd)$ 4^+ (Ours) and maintain y

Remarks:

1. Take k = ns/d, the iteration complexity is $\mathcal{O}(sn)$. 2. The advantage comes from the fact that gradient

References

[1] 1. Qi Lei, et al. "Doubly greedy primal-dual coordinate descent for sparse empirical risk minimization." ICML-Volume 70. JMLR. org, 2017

could be maintained with the bilinear form.

3. The per iteration progress is as large as that of full projected gradient descent + gradient ascent steps

[2] 2. Zeyuan Allen-Zhu, et al. "Linear convergence of a Frank-Wolfe type algorithm over trace-norm balls." In Advances in Neural Information Processing Systems, 2017.

Our Algorithm: Primal-Dual Block Generalized Frank-Wolfe

Challenges to get full benefits from FW and the partial updates. 1. FW yield sublinear convergence even for strongly convex problems 2. Even with partial updates, FW requires to compute the full gradient. (For big data setting, **per** iteration complexity is the same with projected gradient descent.)

