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Many fundamental machine learning tasks can be formulated as min-max optimization. This

motivates us to design effective and efficient first-order methods that provably converge to the global

min-max points. For this purpose, this thesis focuses on designing practical algorithms for several

specific machine learning tasks. We considered some different settings: unconstrained or constrained

strongly-convex (strongly-)concave, constrained convex-concave, and nonconvex-concave problems.

We tackle the following concrete questions by studying the above problems:

1. Can we reformulate a single minimization problem to two-player games to help reduce

the computational complexity of finding global optimal points?

2. Can projection-free algorithms achieve last-iterate convergence for constrained min-max

optimization problems with the convex-concave landscape?

3. Can we show that stochastic gradient descent-ascent, a method commonly used in practice

for GAN training, actually finds global optima and can learn a target distribution?
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We make progress on these questions by proposing practical algorithms with theoretical

guarantees. We also present extensive empirical studies to verify the effectiveness of our proposed

methods.
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Chapter 1

Overview

1.1 Overview of Min-Max Optimization

An important research area in machine learning involves multiple agents with different

objectives interacting with each other. These problems can be mathematically modeled as n-player

games. Therefore, as a starting point, this thesis focuses on two-player zero-sum games, i.e.,

min-max optimization. The formal mathematical formulation of this problem is:

min
x∈X

max
y∈Y

f(x,y). (1.1)

The goal of the first player x is to minimize the function value f(x,y) within allowed actions in X,

while the other player y intends to maximize f(x,y) inside Y. Applications of this problem include

generative adversarial networks (GANs) [61], hierarchical reinforcement learning [33], adversarial

learning [150], proximal gradient TD learning [106], fair statistical inference [51, 107], synthetic

gradients [70], imaginary agents [162] and many more. With the wide applications of this problem,

it is important to develop efficient algorithms that probably find the optimal points of Eqn. (1.1).

Gradient-based methods, especially gradient descent-ascent (GDA), are widely used in practice to

solve these problems. GDA alternates between a gradient ascent steps on x and a gradient descent

steps on y. We continue with an overview of min-max optimization in different settings.
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1.1.1 Strongly-Convex Primal-Dual Formulation

The primal-dual convex-concave saddle point problem is of the form:

min
x∈X⊆Rd

max
y∈Y⊆Rn

g(x) + y>Ax− f(y). (1.2)

This setting is directly motivated by a wide range of applications including regularized and con-

strained empirical risk minimization [170], a class of unsupervised learning [168], policy evaluation

[46], robust optimization [19], and so forth.

With the primal-dual formulation, prior work focuses on unconstrained problems. For the

case when f and g are both strongly convex, it has been understood for long that primal-dual

gradient-type methods converge linearly [25]. Further, [47, 161] showed that GDA achieves a linear

convergence rate when g is convex and f is strongly convex.

Under the separable assumption that f = 1
n

∑
i fi, [178] introduce a novel stochastic

primal-dual coordinate method (SPDC), which with acceleration achieves a time complexity of

O(nd (1 +
√
κ/n) log(1/ε))1, matching that of accelerated stochastic dual coordinate descent

methods.

1.1.2 Convex Min-Max Games

Arguably, one of the most celebrated theorems and a founding stone in Game Theory is the

minimax theorem by Von Neumann [160]. It states that

min
x∈∆n

max
y∈∆m

f(x,y) = max
y∈∆m

min
x∈∆n

f(x,y), (1.3)

1Here κ is the condition number of the primal form g(x) + 1
n

∑
i f
∗
i (a>i x)

2



where f : ∆n ×∆m → R is convex in x, concave in y. The aforementioned result holds for any

convex compact sets X ⊂ R
n and Y ⊂ R

m. The min-max theorem reassures us that an equilibrium

always exists in bilinear games (1.2) or its convex-concave analog (f(x,y) is interpreted as the

payment of the x player to the y player). Equilibrium is a pair of randomized strategies (x∗,y∗)

such that neither player can improve their payoff by unilaterally changing their distribution.

Soon after the appearance of the minimax theorem, research was focused on dynamics for

solving min-max optimization problems by having the min and max players of (3.1) run a simple

online learning procedure. In the online learning framework, at time t, each player chooses a

probability distribution (xt,yt respectively) simultaneously depending only on the past choices of

both players (i.e., x1, ...,xt−1,y1, ...,yt−1) and experiences payoff that depends on choices xt,yt.

An early method, proposed by Brown [18] and analyzed by Robinson [142], was fictitious

play. Later on, researchers discover several learning robust algorithms converging to minimax

equilibrium at faster rates, see [21]. This class of learning algorithms, are the so-called “no-regret”

and include the Multiplicative Weights Update method [11] and Follow the regularized leader.

Average Iterate Convergence: Despite the rich literature on no-regret learning, most of the

known results have the feature that min-max equilibrium is shown to be attained only by the time

average. This means that the trajectory of a no-regret learning method (xt,yt) has the property

that 1
t

∑
τ≤t(x

τ )>Ayτ converges to the equilibrium of (3.1), as t→∞. Unfortunately, that does

not mean that the last iterate (xt,yt) converges to an equilibrium, it commonly diverges or cycles.

One such example is the well-known Multiplicative Weights Update Algorithm, the time average of

which is known to converge to an equilibrium, but the actual trajectory cycles towards the boundary

of the simplex ([14]). This is even true for the vanilla Gradient Descent/Ascent, where one can

3



show for even bilinear landscapes (unconstrained case) the last iterate fails to converge [39].

Motivated by the training of Generative Adversarial Networks (GANs), the last couple

of years researchers have focused on designing and analyzing procedures that exhibit last iterate

convergence (or pointwise convergence) for zero-sum games. This is crucial for training GANs, the

landscapes of which are typically non-convex non-concave and averaging now as before do not give

many guarantees (e.g., note that Jensen’s inequality is not applicable anymore). In [39, 103] the

authors show that a variant of Gradient Descent/Ascent, called Optimistic Gradient Descent/Ascent

has last iterate convergence for the case of bilinear functions x>Ay where x ∈ Rn and y ∈ Rm

(this is called the unconstrained case, since there are no restrictions on the vectors). Later on, [40]

generalized the above result with simplex constraints, where the online method that the authors

analyzed was Optimistic Multiplicative Weights Update. In [113], it is shown that Mirror Descent

with extra gradient computation converges pointwise for a class of zero-sum games that includes the

convex-concave setting (with arbitrary constraints), though their algorithm does not fit in the online

no-regret framework since it uses information twice about the payoffs before it iterates. Last but

not least there have appeared other works that show pointwise convergence for other settings (see

[131, 41] and [1] and references therein) to stationary points (but not local equilibrium solutions).

1.1.3 Non-Convex Games

Non-convex and non-concave problems are the most general and indisputably the hardest

setting. With this general form, finding its equilibria is at least as hard as standard minimization

problems. This problem is therefore “hopelessly impractical to solve" in general [146], because

it is PPAD hard [42]. To tackle this problem, a starting point is to formally define the local min-

max points such that algorithms with local updates (i.e. GDA and many other commonly used

4



first/second-order algorithms) could possibly find them. Jin et al. take an initial step in the machine

learning community to formalize the local min-max point in [72]. However, local min-max points

are not guaranteed to exist and therefore in general GDA will not always be effective to find them.

Stronger Conditions: Fortunately, with stricter conditions, one may still possibly derive con-

vergence guarantees, either locally or globally. Under some strong conditions, it is established

in [29] that GDA dynamics converges locally to Nash equilibria. While the work in [41] study

min-max optimization (or zero-sum games), a much more general setting of nonzero-sum games

and multi-player games is considered in [109]. They have established that stable limit points of

GDA are not necessarily Nash equilibria. However, second-order methods have proven useful in the

sense of their stable fixed points are exactly Nash equilibria, as shown in [4, 109]. Under nonconvex

but concave setting, an algorithm combining approximate maximization over y and a proximal

gradient method for x is proposed in [137] to show convergence to stationary points.

Specific Applications: Meanwhile, for some specific problems, one could still possibly prove

global convergence, or GDA heuristics have been proved effective in practice due to the good

problem structure. Specifically, some strong assumptions have been investigated in the setting of

GAN training [67, 121] to ensure that Nash equilibria are stable fixed points of GDA. When the

objective satisfies a variational inequality, by solving some strong variational inequality problems,

[104] proposes a proximal algorithm with convergence to stationary points. We show that stochastic

GDA learns the optimal distribution with one-layer generators using Wasserstein-GANs [93].

For adversarial training (AT), the update on the first player (i.e., the attacker) is constrained

to move in some small ball (i.e., the threat model). AT requires to achieve maximum value in the

5



inner loop and the problem will become a simple minimization problem. In this case, AT heuristics

with PGD attacks are effective in practice. We also propose some heuristic for the problems where

[28]. Some recent work [55] studies the dynamics under the NTK (Neural Tangent Kernel) regime.

1.2 Organization and Contributions

This thesis focuses on four concrete settings in min-max optimization. We gradually go

from the simplest setting, i.e., (strongly) convex-concave to a more general setting where it becomes

unclear whether a simple first-order algorithm will find the optimal min-max point.

For strongly-convex and strongly concave setting, GDA and its variants have proven effective.

In Chapter 2, we establish the situations where reformulating a single minimization problem into

a two-player game improves the convergence speed to reach equilibrium [97, 100]. The min-max

formulation enables us to exploit the underlying problem structure such as sparsity or low rank, and

the cost of our method depends only on the structural complexity of the solutions instead of the

ambient dimension.

Despite the popularity of the GDA algorithm, it fails to converge even for simple bilinear

zero-sum games [39]. But for a convex-concave setting, this issue could be fixed by some small

adjustments like extra-gradient [118] or adding negative momentum [39]. However, the problem is

generally much harder for constrained problems [40]. On the other hand, for real games we care

about mixed strategies rather than single actions. For mixed strategies we generally represent θ and

ω as probability density over possible actions. Therefore it is more important to study constrained

problems, especially with simplex constraints that represent categorical distributions.

In Chapter 3, we proposed the optimistic multiplicative weight update algorithm that

6



provably exhibits local convergence to equilibrium points, for convex-concave min-max games with

simplex constraints [94]. It is established on a careful analysis of the dynamical system induced by

our algorithm.

In Chapter 4 we studied the training dynamics of generative adversarial networks

(GANs), which is a non-convex/non-concave game. Specifically, we show that with stochas-

tic gradient descent, we can learn an optimal generator for one-layer generative networks with

polynomial time and sample complexity [93].

This thesis is based on my existing work [97, 100, 94, 93]. I have also studied other topics

during my PhD, including matrix analysis [158, 99, 174], distributed learning [155, 179], neural

network architecture [175], adversarial attack/robustness [96, 169, 28], data mining [98, 165, 95,

172, 171], compressed sensing [92, 164], and representation learning [48].
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Chapter 2

(Constrained) Strongly Convex-Concave Objective: On
Exploiting the Structural Complexity

8



We consider the convex-concave saddle point problem minx∈C maxy∈Y g(x)+y>Ax−f(y)

where the constraint C or the regularizer g enforce some underlying structure on the optimal variable

x∗ such as sparsity or low rank. We propose a class of algorithms that fully exploit the problem

structure and reduce the per-iteration cost while maintaining linear convergence rate. The per

iteration cost of our methods depend on the structural complexity of the solution (i.e. sparsity/low-

rank) instead of the ambient dimension. We empirically show that our algorithm outperforms the

state-of-the-art methods on (multi-class) classification tasks.1

2.1 Introduction

We consider optimization problems of the form:

min
x∈C⊆X

max
y∈Y

: g(x) + y>Ax− f(y),

motivated by a wide range of applications including regularized and constrained empirical risk

minimization [170], a class of unsupervised learning [168], policy evaluation [46], robust op-

timization [19] and so forth. Particularly, we are interested in problems whose solution has

special “simple” structure like low-rank or sparsity. The sparsity constraint applies to large-scale

multiclass/multi-label classification, low-degree polynomial data mapping [23], random feature

kernel machines [138], and Elastic Net [180]. Motivated by recent applications in low-rank multi-

class SVM, phase retrieval, matrix completion, affine rank minimization and other problems (e.g.,

1This work is based on the following published conference papers:
1. Qi Lei, Jiacheng Zhuo, Constantine Caramanis, Inderjit S Dhillon, Alexandros G Dimakis. “Primal-Dual Block
Frank-Wolfe”, Proc. of Neural Information Processing Systems (NeurIPS) 2019 [100]
2. Qi Lei, Enxu Yan, Chao-yuan Wu, Pradeep Ravikumar, Inderjit Dhillon, “Doubly Greedy Primal-Dual Coordinate
Methods for Sparse Empirical Risk Minimization”, Proc. of International Conference of Machine Learning (ICML),
2017 [97]
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[49, 136, 6, 20, 179]), we also consider settings where the constraint x ∈ C (e.g., trace norm ball)

while convex, may be difficult to project onto. A wish-list for this class of problems would include

an algorithm that (1) exploits the simple structure of the solution, (2) achieves linear convergence

for smooth and strongly convex problems, (3) does not pay a heavy price for the projection step.

For constrained case where C is nuclear norm or `1 norm bound, we propose a Frank-Wolfe

type algorithm. For unconstrained problem where C = X and g contains `1 regularizer, we propose

a doubly greedy update routine. Our proposals attain these three goals simultaneously. However,

this does not come without challenge:

Notice the considered saddle-point problem is equivalent to a simple minimization on

g(x) + f ∗(Ax) (normally referred as the primal form) where f ∗ is the convex conjugate of f .

However, prior studies that directly optimize on the primal form do not benefit from the simple

structures of the optimal solution. We argue that the saddle point formulation accordingly enables

us to achieve the first goal. Specifically, we show that y guides the search of the most important

sparse or low rank directions to update in x, and vice versa for x. Such structural updates cost

much fewer computations but achieve comparable progress as full updates.

On the other hand, for problems like phase retrieval and ERM for multi-label multi-class

classification, the gradient computation requires large matrix multiplications. This dominates the

per-iteration cost, and the existing FW type methods do not asymptotically reduce time complexity

per iteration, even without paying the expensive projection step. Meanwhile, for simpler constraints

like the `1 norm ball or the simplex, it is unclear if FW can offer any benefits compared to other

methods. Moreover, as is generally known, FW suffers from sub-linear convergence rate even for

well-conditioned problems that enjoy strong convexity and smoothness.
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2.2 Related Work

Frank-Wolfe Type Methods We review relevant algorithms that improve the overall performance

of Frank-Wolfe type methods. Such improvements are roughly obtained for two reasons: the

enhancement on convergence speed and the reduction on iteration cost. Very few prior works benefit

in both.

Nesterov’s acceleration has proven effective as in Stochastic Condition Gradient Sliding

(SCGS) [87] and other variants [163, 117, 56]. Restarting techniques dynamically adapt to the

function geometric properties and fills in the gap between sublinear and linear convergence for FW

method [80]. Some variance reduced algorithms obtain linear convergence as in [66], however, the

number of inner loops grows significantly and hence the method is not computationally efficient.

Linear convergence has been obtained specifically for polytope constraints like [122], as

well as the work proposed in [85, 60] that use the Away-step Frank Wolfe and Pair-wise Frank

Wolfe, and their stochastic variants. One recent work [5] focuses on trace norm constraints and

proposes a FW-type algorithm that yields similar progress as projected gradient descent per iteration

but is almost projection free. However, in many applications where gradient computation dominates

the iteration complexity, the reduction on projection step doesn’t necessarily produce asymptotically

better iteration costs.

The sparse update introduced by FW steps was also appreciated by [86], where they con-

ducted dual updates with a focus on SVM with polytope constraint. Their algorithm yields low

iteration costs but still suffer from sub-linear convergence.

Primal-Dual Formulation With the primal-dual formulation, prior work focuses on uncon-

strained problems. For the case when f and g are both strongly convex, it has been understood for
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long that primal-dual gradient-type methods converge linearly [25]. Further, [47, 161] showed that

GDA achieves a linear convergence rate when g is convex and f is strongly convex.

Under the separable assumption that f = 1
n

∑
i fi, [178] introduce a novel stochastic

primal-dual coordinate method (SPDC), which with acceleration achieves a time complexity of

O(nd (1 +
√
κ/n) log(1/ε))2, matching that of accelerated stochastic dual coordinate descent

methods.

However, in practice, SPDC could lead to more expensive computations for sparse data

matrices due to dense updates. For some special choices of the model, [178] provided efficient

implementation for sparse feature structures, but the average update time for each coordinate is

still much longer than that of dual coordinate descent. Moreover, they cannot exploit intermediate

sparse iterates by methods such as shrinking technique [68].

We note that the mentioned algorithms only show worse than or simply match the overall

complexity compared to conventional methods that optimize on the primal form directly. Therefore

we raise the following question: Does the primal-dual formulation have other good properties that

could be leveraged to improve optimization performance?

For instance, some recent work with the primal-dual formulation updates stochastically

sampled coordinates [173], which has a reduced cost per iteration, provided the data admits a

low-rank factorization or when the proximal mapping for primal and dual variables are relatively

computational expensive, which however may not hold in practice, so that the the noise caused by

this preprocessing could hurt test performance. Moreover, even when their assumptions hold, their

low-rank matrix factorization step itself may dominate the total computation time.

2Here κ is the condition number of the primal form g(x) + 1
n

∑
i f
∗
i (a>i x)
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Our contributions. In this work we tackle the challenges by exploiting the special structure

induced by the constraints and FW steps. We propose a generalized variant of FW that we call Primal-

Dual Block Generalized Frank Wolfe. The main advantage is that the computational complexity

depends only on the sparsity of the solution, rather than the ambient dimension, i.e. it is dimension

free. This is achieved by conducting partial updates in each iteration, i.e., sparse updates for `1 and

low-rank updates for the trace norm ball. While the benefits of partial updates is unclear for the

original problem, we show in this work how they significantly benefit a primal-dual reformulation.

This reduces the per iteration cost to roughly a ratio of s
d

compared to naive Frank-Wolfe, where s

is the sparsity (or rank) of the optimal solution, and d is the feature dimension. Meanwhile, the per

iteration progress of our proposal is comparable to a full gradient descent step, thus retaining linear

convergence rate.

For strongly convex and smooth f and g we show that our algorithm achieves linear

convergence with per-iteration cost sn over `1-norm ball, where s upper bounds the sparsity of

the primal optimal. Specifically, for sparse ERM with smooth hinge loss or quadratic loss with `2

regularizer, our algorithm yields an overall O(s(n + κ) log 1
ε
) time complexity to reach ε duality

gap, where κ is the condition number (smoothness divided by strong convexity). Our theory has

minimal requirements on the data matrix A.

Experimentally we observe our method yields significantly better performance compared to

prior work, especially when the data dimension is large and the solution is sparse. Therefore we

achieve the state-of-the-art performance both in time complexity and in practice measured by CPU

time, for regularized ERM with smooth hinge loss and matrix sensing problems.
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2.3 Preliminary

Notation. We briefly introduce the notation used throughout the paper. We use bold lower

case letter to denote vectors, capital letter to represent matrices. ‖ · ‖ is `2 norm for vectors and

Frobenius norm for matrices unless specified otherwise. ‖ · ‖∗ indicates the trace norm for a matrix.

We say a function f is α strongly convex if f(y) ≥ f(x) + 〈g,y−x〉+ α
2
‖y−x‖2, where

g ∈ ∂f(x) is any sub-gradient of f . Similarly, f is β-smooth when f(y) ≤ f(x) + 〈g,y − x〉+

β
2
‖y − x‖2. We use f ∗ to denote the convex conjugate of f , i.e., f ∗(y)

4
= maxx〈x,y〉 − f(x).

Some more parameters are problem-specific and are defined when needed.

Primal-Dual Formulation. Note that the problem we are tackling is as follows:

min
x∈C
{P (x) ≡ f ∗(Ax) + g(x)} , (2.1)

We first focus on the setting where x ∈ Rd is a vector and C is the `1-norm ball. This form covers

general classification or regression tasks with f being some loss function and g being a regularizer.

Extension to matrix optimization over a trace norm ball is introduced in Section 2.5.1.

Even with the constraint, we could reform (2.1) as a primal-dual convex-concave saddle

point problem:

(2.1) ⇔ min
x∈C

max
y∈Y
{L(x,y) ≡ g(x) + 〈y, Ax〉 − f(y)} , (2.2)

or its dual formulation:

(2.1)⇔ max
y

{
D(y) := min

x∈C
{g(x) + 〈y, Ax〉} − f(y)

}
. (2.3)

Notice (2.3) is not guaranteed to have an explicit form. Therefore some existing FW variants like

[86] that optimizes over (2.3) may not apply. Instead, we directly solve the convex concave problem
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(2.2) and could therefore solve more general problems, including complicated constraint like trace

norm.

Since the computational cost of the gradient ∇xL and ∇yL is dominated by computing

A>y and Ax respectively, sparse updates could reduce computational costs by a ratio of roughly

O(d/s) for updating x and y while achieving good progress.

2.3.1 A Theoretical Vignette

In this section, we review the previous methods that achieve linear convergence while

conducting only partial (low rank/sparse) updates on the learned variables.

To elaborate the techniques we use to obtain the linear convergence for our Frank-Wolfe

type algorithm, we consider the `1 norm constrained problem as an illustrating example:

arg min
x∈Rd,‖x‖1≤τ

f(x), (2.4)

where f is L-smooth and µ-strongly convex. If we invoke the Frank Wolfe algorithm, we compute

x(t) ← (1− η)x(t−1) + ηx̃, where x̃← arg min
‖x‖1≤τ

〈∇f(x(t−1)),x〉. (2.5)

Even when the function f is smooth and strongly convex, (2.5) converges sublinearly. As inspired by

[5], if we assume the optimal solution is s-sparse, we can enforce a sparse update while maintaining

linear convergence by a mild modification on (2.5):

x(t) ← (1−η)x(t−1)+ηx̃, where x̃← arg min
‖x‖1≤τ,‖x‖0≤s

{〈∇f(x(t−1)),x〉+L

2
η‖x(t−1)−x‖2

2}. (2.6)

We also call this new practice block Frank-Wolfe as in [5]. The proof of convergence can be

completed within three lines. Let ht = f(x(t))−minx f(x).

ht = f(x(t−1) + η(x̃− x(t−1)))−min
x
f(x)
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≤ ht−1 + η〈∇f(x(t−1)), x̃− x(t−1)〉+
L

2
η2‖x̃− x(t−1)‖2 (Smoothness of f )

≤ ht−1 + η〈∇f(x(t−1)),x∗ − x(t−1)〉+
L

2
η2‖x∗ − x(t−1)‖2 (Definition of x̃)

≤ (1− η +
L

µ
η2)ht−1 (by convexity and µ-strong convexity of f ) (2.7)

Therefore, when η = µ
2L

, ht+1 ≤ (1 − µ
4L

)th1 and the iteration complexity is O(L
µ

log(1/ε)) to

achieve ε error.

Similarly, with greedy coordinate descent algorithm, we simply remove the additional

constraint and conduct the following update:

x(t) ← (1− η)x(t−1) + ηx̃, where x̃← arg min
‖x‖0≤s

{〈∇f(x(t−1)),x〉+
L

2
η‖x(t−1) − x‖2

2}. (2.8)

With exact the same analysis, we note that GCD also achieves linear convergence with sufficiently

large s.

For both methods, we note that to search for the sparse update, one requires to compute

the full gradient. This costs the same computational complexity as (Projected) Gradient Descend,

without further assumption of f . Luckily, with the sparse updates, it is possible to improve the

iteration complexity, while maintaining the linear convergence rate. In order to differentiate, we

name the sparse update nature of (2.6) as partial update.

Next we elaborate the situations when one benefits from partial updates. Consider a

quadratic function: f(x) = 1
2
x>Ax, whose gradient is Ax for symmetric A. As x̃ is sparse, One

can maintain the value of the gradient efficiently [99]: Ax(t) ≡ (1− η)Ax(t−1) + ηAI,:x̃, where I

is the support set of x̃. We therefore reduce the complexity of one iteration to O(sd), compared to

O(d2) with PGD. Similar benefits hold when we replace x by a matrix X and conduct a low-rank

update on X . The benefit of partial update is not limited to quadratic functions. Next we show that
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for a class of composite function, we are able to take the full advantage of the partial update, by

taking a primal-dual re-formulation.

2.4 Methodology

With the primal-dual formulation, we are ready to introduce our algorithm. The idea

is simple: for primal variable x, we conduct block Frank-Wolfe or greedy coordinate descent

respectively for constrained and unconstrained cases. Meanwhile, for the dual variable y we

conduct greedy coordinate ascent method to select and update k coordinates (k determined later).

We selected coordinates that allow the largest step, which is usually referred as a Gauss-Southwell

rule denoted by GS-r [129]. We have the following assumptions on f and g:

Assumption 2.4.1. We assume the functions satisfy the following properties:

• Each loss function f is convex and β-smooth, and is α strongly convex over some convex set

(could be R), and linear otherwise.

• ‖ai‖2 ≤ R, ∀i.

• g is µ-strongly convex and L-smooth.

Suitable loss functions f include smooth hinge loss [145] and quadratic loss function.

Relevant applications covered are Support Vector Machine (SVM) with smooth hinge loss, elastic

net [180], matrix sensing, linear regression problem with quadratic loss and so forth.
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Algorithm 1 Primal-Dual Block Generalized Frank-Wolfe Method for `1 Norm Ball
1: Input: Training data A ∈ Rn×d, primal and dual step size η, δ > 0.
2: Initialize: x(0) ← 0 ∈ Rd, y(0) ← 0 ∈ Rn,w(0) ≡ Ax = 0 ∈ Rn, z(0) ≡ A>y = 0 ∈ Rd
3: for t = 1, 2, · · · , T do
4: Use Block Frank Wolfe to update the primal variable:

x̃← arg min
‖x‖1≤λ,‖x‖0≤s

{〈z(t−1) +∇g(x(t−1)),x〉+
L

2
η‖x− x(t−1)‖2} (2.9)

x(t) ← (1− η)x(t−1) + ηx̃

5: Update w to maintain the value of Ax:

w(t) ← (1− η)w(t−1) + ηA∆x (2.10)

6: Consider the potential dual update:

ỹ = arg max
y′

{
〈w(t),y′〉 − f(y′)− 1

2δ
‖y′ − y(t−1)‖2

}
. (2.11)

7: Choose greedily the dual coordinates to update: let I(t) be the top k coordinates that maximize

|ỹi − y(t−1)i |, i ∈ [n].

Update the dual variable accordingly:

y
(t)
i ←

{
ỹi if i ∈ I(t)

y
(t−1)
i otherwise.

(2.12)

8: Update z to maintain the value of A>y

z(t) ← z(t−1) +A>:,I(t)(y
(t) − y(t−1)) (2.13)

9: end for
10: Output: x(T ),y(T )

2.4.1 Primal-Dual Block Generalized Frank-Wolfe

The formal algorithm is presented in Algorithm 1. As L(x,y) is µ-strongly convex and

L-smooth with respect to x, we set the primal learning rate η = µ
2L

according to Section 2.3.1.
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Meanwhile, the dual learning rate δ is set to balance its effect on the dual progress as well as the

primal progress. We specify it in the theoretical analysis part.

The computational complexity for each iteration in Algorithm 1 is O(ns). Both primal and

dual update could be viewed as roughly three steps: coordinate selection, variable update, and

maintaining ATy or Ax. The coordinate selection as Eqn. (2.9) for primal and the choice of I(t) for

dual variable respectively take O(d) and O(n) on average if implemented with the quick selection

algorithm. The variable update costs O(d) and O(n). The dominating cost is to maintain Ax as in

Eqn. (2.10) that takes O(ns), and O(dk) of maintaining A>y as in Eqn. (2.13). To balance the time

budget for primal and dual step, we set k = ns/d and achieve an overall complexity of O(ns) per

iteration.

For unconstrained problems, we simply replace the Eqn. (2.9) in Step 4 with the uncon-

strained version (2.8).

2.5 Theoretical Analysis

We derive convergence analysis under Assumption 2.4.1. The derivation consists of the

analysis on the primal progress, the balance of the dual progress, and their overall effect.

Define the primal gap as ∆
(t)
p
4
= L(x(t+1),y(t)) − L(x̄(t),y(t)), where x̄(t) is the primal

optimal solution such that the dual D(y(t)) = L(x̄(t),y(t)), and is sparse enforced by the `1

constraint. The dual gap is ∆
(t)
d

4
= D∗ −D(y(t)). We analyze the convergence rate of duality gap

∆(t) ≡ max{1, (β/α− 1)}∆(t)
p + ∆

(t)
d .

Primal progress: Firstly, similar to the analysis in Section 2.3.1, we could derive that
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primal update introduces a sufficient descent as in Lemma A.1.2.

L(x(t+1),y(t))− L(x(t),y(t)) ≤ −η
2

∆(t)
p .

Dual progress: With the GS-r rule to carefully select and update the most important k

coordinates in the dual variable in (2.11), we are able to derive the following result on dual progress

that diminishes dual gap as well as inducing error.

−‖y(t) − y(t−1)‖2 ≤ − kδ
nβ

∆
(t)
d +

kδ

n2
R‖x̄(t) − x(t)‖2

2

Refer to Lemma A.1.5 for details.

Primal Dual progress: The overall progress evolves as:

∆(t) −∆(t−1) ≤

primal progress︷ ︸︸ ︷
L(x(t+1),y(t))− L(x(t),y(t))− 1

4δ

dual progress︷ ︸︸ ︷
‖y(t) − y(t−1)‖2 +

3δRk

2n2

primal hindrance︷ ︸︸ ︷
‖x̄(t) − x(t)‖2 .

In this way, we are able to connect the progress on duality gap with constant fraction of its value,

and achieve linear convergence:

Theorem 2.5.1. Given a function P (x) = f ∗(Ax) + g(x) that satisfies Assumption 2.4.1. Set s

to upper bound the sparsity of the primal optimal x̄(t), and learning rates η = µ
2L
, δ = 1

k
( L
µβ

+

5βR
2αµ

(1 + 4L
µ

))−1. The duality gap ∆(t) = max{1, β
α
− 1}∆(t)

p + ∆
(t)
d generated by Algorithm 1 takes

O(L
µ

(1+ β
α
Rβ
µ

) log 1
ε
) iterations to achieve ε error. The overall complexity is O(nsL

µ
(1+ β

α
Rβ
µ

) log 1
ε
).

For our target applications like elastic net, or ERM with smooth hinge loss, the loss function

is separable: f(y) = 1
n

∑
i fi(y). In this case, the primal-dual form for f ∗(Ax) becomes L(x,y) =

g(x) + 1
n
y>Ax− 1

n

∑
i fi(yi), we are able to connect the time complexity to the condition number

of the primal form:
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Corollary 2.5.2. Given an objective P (x) = 1
n

∑n
i=1 f

∗
i (a>i x) + g(x), with a smooth hinge loss

or quadratic loss f ∗i that is β-smooth, and `2 regularizer g = µ
2
‖x‖2. Define the condition number

κ = βR
µ

. Setting s upper bounds the sparsity of the primal optimal x̄(t), and learning rates

η = 1
2
, δ = 1

k
( 1
nβ

+ 25R
2µn2 )−1, the duality gap ∆(t) takes O((1 + κ

n
) log 1

ε
) iterations to achieve ε error.

The overall complexity is O(s(n+ κ) log 1
ε
).

Remark 2.5.1. Both Theorem 2.5.1 and Corollary 2.5.2 cover the unconstrained when we replace

block Frank-Wolfe with Greedy Cooordinate Descent steps trivially.

Our derivation of overall complexity implicitly requires ns ≥ d by setting k = sd/n ≥ 1.

This is true for our considered applications like SVM. Otherwise we choose k = 1 and the

complexity becomes O(max{d, ns}(1 + κ
n
) log 1

ε
).

In Table 2.1, we briefly compare the time complexity of our algorithm with some benchmark

algorithms: (1) Accelerated Projected Gradient Descent (PGD) (2) Frank-Wolfe algorithm (FW) (3)

Stochastic Variance Reduced Gradient (SVRG) [74] (4) Stochastic Conditional Gradient Sliding

(SCGS) [87] and (5) Stochastic Variance-Reduced Conditional Gradient Sliding (STORC) [66]. The

comparison is not thorough but intends to select constrained optimization that improves the overall

complexity from different perspective. Among them, accelerated PGD improves conditioning of

the problem, while SCGS and STORC reduces the dependence on number of samples. In the

experimental session we show that our proposal outperforms the listed algorithms under various

conditions.
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Algorithm Per Iteration Cost Iteration Complexity
Frank Wolfe O(nd) O(1

ε
)

Accelerated PGD [127] O(nd) O(
√
κ log 1

ε
)

SVRG [74] O(nd) O((1 + κ/n) log 1
ε
)

SCGS [87] O(κ2 #iter3

ε2
d) O(1

ε
)

STORC [66] O(κ2d+ nd) O(log 1
ε
)

Primal Dual FW (ours) O(ns) O((1 + κ/n) log 1
ε
)

Table 2.1: Time complexity comparisons on the setting of Corollary 2.5.2. For clear comparison,
we refer the per iteration cost as the time complexity of outer iterations.

2.5.1 Extension to the Trace Norm Ball

We also extend our algorithm to matrix optimization over trace norm constraints:

min
‖X‖∗≤λ,X∈Rd×c

{
1

n

n∑
i=1

fi(a
>
i X) + g(X)

}
. (2.14)

This formulation covers multi-label multi-class problems, matrix completion, affine rank mini-

mization, and phase retrieval problems (see reference therein [20, 5]). Equivalently, we solve the

following primal-dual problem:

min
‖X‖∗≤λ,X∈Rd×c

max
Y ∈Rn×c

{
L(X, Y ) ≡ g(X) +

1

n
〈AX, Y 〉 − 1

n

n∑
i=1

fi(yi)

}
.

Here yi is the i-th row of the dual matrix Y . For this problem, the partial update we enforced on

the primal matrix is to keep the update matrix low rank:

X̃ ← arg min
‖X‖∗≤λ,rank(X)≤s

{
〈 1
n
Z +∇g(X(t−1)), X〉+

L

2
η‖X −X(t−1)‖2

}
, Z ≡ A>Y (t−1). (2.15)

However, an exact solution to (2.15) requires computing the top s left and right singular vectors

of the matrix X(t−1) − 1
ηL

(Z + ∇g(X(t−1)) ∈ R
d×c. Therefore we loosely compute an (1

2
, ε/2)-

approximation, where ε is the target accuracy, based on the following definition:
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Algorithm 2 Primal-Dual Block Generalized Frank-Wolfe Method for Trace Norm Ball
1: Input: Training data A ∈ Rn×d, primal and dual step size η, δ > 0. Target accuracy ε.
2: Initialize: X(0) ← 0 ∈ Rd×c, Y (0) ← 0 ∈ Rn×c,W (0) ≡ AX = 0 ∈ Rn×c, Z(0) ≡ A>Y = 0 ∈ Rd×c
3: for t = 1, 2, · · · , T do
4: Use Frank Wolfe to Update the primal variable:

X(t) ← (1− η)X(t−1) + ηX̃, where X̃ ← (
1

2
,
ε

8
)-approximation of Eqn. (2.15).

5: Update W to maintain the value of AX:

W (t) ← (1− η)W (t−1) + ηAX̃ (2.16)

6: Consider the potential dual update:

Ỹ (t) ← arg max
Y

{
〈W,Y 〉 − f(Y )− 1

2δ
‖Y − Y (t−1)‖2

}
(2.17)

7: Choose greedily the rows of the dual variable to update: let I(t) be the top k coordinates that maximize∥∥∥Ỹi,: − Y (t−1)
i,:

∥∥∥
2
, i ∈ [n].

Update the dual variable accordingly:

Y
(t)
i,: ←

{
Ỹi,: if i ∈ I(t)

Y
(t−1)
i,: otherwise.

(2.18)

8: Update Z to maintain the value of A>Y

Z(t) ← Z(t−1) +A>(Y (t) − Y (t−1)) (2.19)

9: end for
10: Output: X(T ), Y (T )

Definition 2.5.3 (Restated Definition 3.2 in [5]). Let lt(V ) = 〈∇XL(X(t), Y (t)), V − X(t)〉 +

L
2
η‖V − X(t)‖2

F be the objective function in (2.15), and let l∗t = lt(X̄
(t)). Given parameters

γ ≥ 0 and ε ≥ 0, a feasible solution V to (2.15) is called (γ, ε)-approximate if it satisfies

l(V ) ≤ (1− γ)l∗t + ε.
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The time dependence on the data size n, c, d, s is ncs+s2(n+c) [5], and is again independent

of d. Meanwhile, the procedures to keep track of W (t) ≡ AX(t) requires complexity of nds+ ncs,

while updating Y (t) requires dck operations. Therefore, by setting k ≤ ns(1/c+ 1/d), the iteration

complexity’s dependence on the data size becomes O(n(d+ c)s) operations, instead of O(ndc) for

conducting a full projected gradient step. Recall that s upper bounds the rank of X̄(t) ≤ min{d, c}.

The trace norm version mostly inherits the convergence guarantees for vector optimization.

Refer to the Appendix for details.

Assumption 2.5.1. We assume the following property on the primal form (2.14):

• fi is 1
β

-strongly convex, and satisfies 1
α

-smooth on some convex set (could be Rc) and infinity

otherwise.

• Data matrix A satisfies R = max|I|≤k,I⊂[n] σ
2
max(AI,:) (≤ ‖A‖2

2). Here σmax(X) denotes the

largest singular value of X .

• g is µ-strongly convex and L-smooth.

The assumptions also cover smooth hinge loss as well as quadratic loss. With the similar

assumptions, the convergence analysis for Algorithm 2 is almost the same as Algorithm 1. The only

difference comes from the primal step where approximated update produces some error:

Primal progress: With the primal update rule in Algorithm 2, it satisfies L(X(t+1), Y (t))−

L(X(t), Y (t)) ≤ − µ
8L

∆
(t)
p + ε

16
. (See Lemma A.1.7.) With no much modification in the proof, we

are able to derive similar convergence guarantees for the trace norm ball.

Theorem 2.5.4. Given a function 1
n

∑n
i=1 fi(a

>
i X) + g(X) that satisfies Assumption 2.5.1. Setting

s ≥rank(X̄(t)), and learning rate η = µ
2L
, δ ≤ 1

k
( L
µnβ

+ 5βR
2αµn2 (1 + 8L

µ
))−1, the duality gap ∆(t)
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generated by Algorithm 2 satisfies ∆(t) ≤ kδ
kδ+8βn

∆(t−1)+ ε
16
. Therefore it takes O(L

α
(1+ β

α
Rβ
nµ

) log 1
ε
)

iterations to achieve ε error.

We also provide a brief analysis on the difficulty to extend our algorithm to polytope-type

constraints in the Appendix A.1.8.

2.6 Experiments

Figure 2.1: Convergence result comparison of different algorithms on smoothed hinge loss.
For six different datasets, we show the decrease of relative primal objective: (P (x(t))− P ∗)/P ∗
over CPU time. Our algorithm (brown) achieves around 10 times speedup over all other methods
except for the smallest dataset duke.

We evaluate the Primal-Dual Block Generalized Frank-Wolfe algorithm by its performance
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on binary classification with smoothed hinge loss3. We refer the readers to Appendix A.1.6 for

details about smoothed hinge loss.

We compare the proposed algorithm against five benchmark algorithms: (1) Accelerated

Projected Gradient Descent (Acc PG) (2) Frank-Wolfe algorithm (FW) (3) Stochastic Variance

Reduced Gradient (SVRG) [74] (4) Stochastic Conditional Gradient Sliding (SCGS) [87] and (5)

Stochastic Variance-Reduced Conditional Gradient Sliding (STORC) [66]. We presented the time

complexity for each algorithm in Table 2.1. Three of them (FW, SCGS, STORC) are projection-free

algorithms, and the other two (Acc PG, SVRG) are projection-based algorithms. Algorithms are

implemented in C++, with the Eigen linear algebra library [64].

The six datasets used here are summarized in Table 2.2. All of them can be found in

LIBSVM datasets [22]. We augment the features of MNIST, ijcnn, and cob-rna by random binning

[138], which is a standard technique for kernel approximation. Data is normalized. We set the

`1 constraint to be 300 and the `2 regularize parameter to 10/n to achieve reasonable prediction

accuracy. We refer the readers to the Appendix A.3.1 for results of other choice of parameters.

These datasets have various scale of features, samples, and solution sparsity ratio.

The results are shown in Fig 2.1. To focus on the convergence property, we show the

decrease of loss function instead of prediction accuracy. From Fig 2.1, our proposed algorithm

consistently outperforms the benchmark algorithms. The winning margin is roughly proportional to

the solution sparsity ratio, which is consistent with our theory.

We also implement Algorithm 2 for trace norm ball and compare it with some prior work in

the Appendix A.3.2, especially Block FW [5]. We generated synthetic data with optimal solutions

3The codes to reproduce our results could be found in https://github.com/CarlsonZhuo/primal_dual_
frank_wolfe.
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of different ranks, and show that our proposal is consistently faster than others.

Dataset Name # Features # Samples # Non-Zero Solution Sparsity (Ratio)
duke breast-cancer [22] 7,129 44 313,676 423 (5.9%)

rcv1 [22] 47,236 20,242 1,498,952 1,169 (2.5%)
news20.binary [22] 1,355,191 19,996 9,097,916 1,365 (0.1%)

MNIST.RB 0 VS 9 [22, 138] 894,499 11,872 1,187,200 8,450 (0.9%)
ijcnn.RB [22, 138] 58,699 49,990 14,997,000 715 (1.2%)

cob-rna.RB [22, 138] 81,398 59,535 5,953,500 958 (1.2%)

Table 2.2: Summary of the properties of the datasets.

2.7 Conclusion

In this paper we consider a class of problems whose solutions enjoy some simple structure

induced by the constraints. We argue that the class of algorithms that conduct sparse updates is able

to exploit the simple structure. Specifically, we propose a FW type algorithm and greedy coordinate

descent to reduce time cost for each update remarkably while attaining linear convergence. For a

class of ERM problems, our running time depends on the sparsity/rank of the optimal solutions

rather than the ambient feature dimension. Our empirical studies verify the improved performance

compared to various state-of-the-art algorithms.
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Chapter 3

Convex-Concave Games: On Last-Iterate Convergence
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In a recent series of papers it has been established that variants of Gradient Descent/Ascent

and Mirror Descent exhibit last iterate convergence in convex-concave zero-sum games. Specifically,

[39, 103] show last iterate convergence of the so called “Optimistic Gradient Descent/Ascent" for

the case of unconstrained min-max optimization. Moreover, in [113] the authors show that Mirror

Descent with an extra gradient step displays last iterate convergence for convex-concave problems

(both constrained and unconstrained), though their algorithm does not follow the online learning

framework; it uses extra information rather than only the history to compute the next iteration. In

this work, we show that "Optimistic Multiplicative-Weights Update (OMWU)" which follows the

no-regret online learning framework, exhibits last iterate convergence locally for convex-concave

games, generalizing the results of [40] where last iterate convergence of OMWU was shown only

for the bilinear case. We complement our results with experiments that indicate fast convergence of

the method.1

3.1 Introduction

In classic (normal form) zero-sum games, one has to compute two probability vectors

~x∗ ∈ ∆n, ~y
∗ ∈ ∆m

2 that consist an equilibrium of the following problem

min
~x∈∆n

max
~y∈∆m

~x>A~y, (3.1)

where A is n×m real matrix (called payoff matrix). Here ~x>A~y represents the payment of the ~x

player to the ~y player under choices of strategies by the two players and is a bilinear function.

1This work is based on the following ArXiv papers:
Qi Lei, Sai Ganesh Nagarajan, Ioannis Panageas, Xiao Wang. “Last iterate convergence in no-regret learning:
constrained min-max optimization for convex-concave landscapes”, arXiv preprint arXiv:2002.06768 [94]

2∆n denotes the simplex of size n.
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Arguably, one of the most celebrated theorems and a founding stone in Game Theory, is the

minimax theorem by Von Neumann [160]. It states that

min
~x∈∆n

max
~y∈∆m

f(~x, ~y) = max
~y∈∆m

min
~x∈∆n

f(~x, ~y), (3.2)

where f : ∆n ×∆m → R is convex in ~x, concave in ~y. The aforementioned result holds for any

convex compact sets X ⊂ R
n and Y ⊂ R

m. The min-max theorem reassures us that an equilibrium

always exists in the bilinear game (3.1) or its convex-concave analogue (again f(~x, ~y) is interpreted

as the payment of the ~x player to the ~y player). An equilibrium is a pair of randomized strategies

(~x∗, ~y∗) such that neither player can improve their payoff by unilaterally changing their distribution.

Soon after the appearance of the minimax theorem, research was focused on dynamics for

solving min-max optimization problems by having the min and max players of (3.1) run a simple

online learning procedure. In the online learning framework, at time t, each player chooses a

probability distribution (~xt, ~yt respectively) simultaneously depending only on the past choices of

both players (i.e., ~x1, ..., ~xt−1, ~y1, ..., ~yt−1) and experiences payoff that depends on choices ~xt, ~yt.

An early method, proposed by Brown [18] and analyzed by Robinson [142], was fictitious

play. Later on, researchers discover several learning robust algorithms converging to minimax

equilibrium at faster rates, see [21]. This class of learning algorithms, are the so-called “no-regret”

and include Multiplicative Weights Update method [11] and Follow the regularized leader.

3.1.1 Average Iterate Convergence

Despite the rich literature on no-regret learning, most of the known results have the feature

that min-max equilibrium is shown to be attained only by the time average. This means that the

trajectory of a no-regret learning method (~xt, ~yt) has the property that 1
t

∑
τ≤t(~x

τ )>A~yτ converges
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to the equilibrium of (3.1), as t→∞. Unfortunately that does not mean that the last iterate (~xt, ~yt)

converges to an equilibrium, it commonly diverges or cycles. One such example is the well-known

Multiplicative Weights Update Algorithm, the time average of which is known to converge to an

equilibrium, but the actual trajectory cycles towards the boundary of the simplex ([14]). This is

even true for the vanilla Gradient Descent/Ascent, where one can show for even bilinear landscapes

(unconstrained case) last iterate fails to converge [39].

Motivated by the training of Generative Adversarial Networks (GANs), the last couple

of years researchers have focused on designing and analyzing procedures that exhibit last iterate

convergence (or pointwise convergence) for zero-sum games. This is crucial for training GANs, the

landscapes of which are typically non-convex non-concave and averaging now as before does not

give much guarantees (e.g., note that Jensen’s inequality is not applicable anymore). In [39, 103] the

authors show that a variant of Gradient Descent/Ascent, called Optimistic Gradient Descent/Ascent

has last iterate convergence for the case of bilinear functions ~x>A~y where ~x ∈ R
n and ~y ∈ R

m

(this is called the unconstrained case, since there are no restrictions on the vectors). Later on, [40]

generalized the above result with simplex constraints, where the online method that the authors

analyzed was Optimistic Multiplicative Weights Update. In [113], it is shown that Mirror Descent

with extra gradient computation converges pointwise for a class of zero-sum games that includes the

convex-concave setting (with arbitrary constraints), though their algorithm does not fit in the online

no-regret framework since it uses information twice about the payoffs before it iterates. Last but

not least there have appeared other works that show pointwise convergence for other settings (see

[131, 41] and [1] and references therein) to stationary points (but not local equilibrium solutions).
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3.1.2 Main Results

In this work, we focus on the min-max optimization problem

min
~x∈∆n

max
~y∈∆m

f(~x, ~y), (3.3)

where f is a convex-concave function (convex in ~x, concave in ~y). We analyze the no-regret online

algorithm Optimistic Multiplicative Weights Update (OMWU). OMWU is an instantiation of the

Optimistic Follow the Regularized Leader (OFTRL) method with entropy as a regularizer (for both

players, see Preliminaries section for the definition of OMWU).

We prove that OMWU exhibits local last iterate convergence, generalizing the result of [40]

and proving an open question of [154] (for convex-concave games). Formally, our main theorem is

stated below:

Theorem 3.1.1 (Last iterate convergence of OMWU). Let f : ∆n × ∆m → R be a twice dif-

ferentiable function f(~x, ~y) that is convex in ~x and concave in ~y. Assume that there exists an

equilibrium (~x∗, ~y∗) that satisfies the KKT conditions with strict inequalities (see (3.4)). It holds

that for sufficiently small stepsize, there exists a neighborhood U ⊆ ∆n × ∆m of (~x∗, ~y∗) such

that for all for all initial conditions (~x0, ~y0), (~x1, ~y1) ∈ U , OMWU exhibits last iterate (pointwise)

convergence, i.e.,

lim
t→∞

(~xt, ~yt) = (~x∗, ~y∗),

where (~xt, ~yt) denotes the t-th iterate of OMWU.

Moreover, we complement our theoretical findings with experimental analysis of the proce-

dure. The experiments on KL-divergence indicate that the results should hold globally.
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3.1.3 Structure and Technical Overview

We present the structure of the paper and a brief technical overview.

Section 2 provides necessary definitions, the explicit form of OMWU derived from OFTRL

with entropy regularizer, and some existing results on dynamical systems.

Section 3 is the main technical part, i.e, the computation and spectral analysis of the Jacobian

matrix of OMWU dynamics. The stability analysis, the understanding of the local behavior and the

local convergence guarantees of OMWU rely on the spectral analysis of the computed Jacobian

matrix. The techniques for bilinear games (as in [40]) are no longer valid in convex-concave games.

Allow us to explain the differences from [40]. In general, one cannot expect a trivial generalization

from linear to non-linear scenarios. The properties of bilinear games are fundamentally different

from that of convex-concave games, and this makes the analysis much more challenging in the latter.

The key result of spectral analysis in [40] is in a lemma (Lemma B.6) which states that a skew

symmetric3 has imaginary eigenvalues. Skew symmetric matrices appear since in bilinear cases

there are terms that are linear in ~x and linear in ~y but no higher order terms in ~x or ~y. However, the

skew symmetry has no place in the case of convex-concave landscapes and the Jacobian matrix of

OMWU is far more complicated. One key technique to overcome the lack of skew symmetry is the

use of Ky Fan inequality [120] which states that the sequence of the eigenvalues of 1
2
(W +W>)

majorizes the real part of the sequence of the eigenvalues of W for any square matrix W (see Lemma

3.1).

Section 4 focuses on numerical experiments to understand how the problem size and the

choice of learning rate affect the performance of our algorithm. We observe that our algorithm is

3A is skew symmetric if A> = −A.
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able to achieve global convergence invariant to the choice of learning rate, random initialization or

problem size. As comparison, the latest popularized (projected) optimistic gradient descent ascent

is much more sensitivity to the choice of hyperparameter. Due to space constraint, the detailed

calculation of the Jacobian matrix (general form and at fixed point) of OMWU are left in Appendix.

Notation The boldface ~x and ~y denote the vectors in ∆n and ∆m. ~xt denotes the t-th iterate of the

dynamical system. The letter J denote the Jacobian matrix. ~I , ~0 and ~1 are preserved for the identity,

zero matrix and the vector with all the entries equal to 1. The support of ~x is the set of indices of xi

such that xi 6= 0, denoted by Supp(~x). (~x∗, ~y∗) denotes the optimal solution for minimax problem.

[n] denote the set of integers {1, ..., n}.

3.2 Preliminaries

In this section, we present some background that will be used later.

3.2.1 Equilibria for Constrained Minimax

From Von Neumann’s minimax theorem, one can conclude that the problem min~x∈∆n max~y∈∆ f(~x, ~y)

has always an equilibrium (~x∗, ~y∗) with f(~x∗, ~y∗) be unique. Moreover from KKT conditions (as

long as f is twice differentiable), such an equilibrium must satisfy the following (~x∗ is a local

minimum for fixed ~y = ~y∗ and ~y∗ is a local maximum for fixed ~x = ~x∗):
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Definition 3.2.1 (KKT conditions). Formally, it holds

~x∗ ∈ ∆n

x∗i > 0⇒ ∂f
∂xi

(~x∗, ~y∗) =
∑n

j=1 x
∗
j
∂f
∂xj

(~x∗, ~y∗)

x∗i = 0⇒ ∂f
∂xi

(~x∗, ~y∗) ≥
∑n

j=1 x
∗
j
∂f
∂xj

(~x∗, ~y∗)

for player ~x,
~y∗ ∈ ∆m

y∗i > 0⇒ ∂f
∂yi

(~x∗, ~y∗) =
∑m

j=1 y
∗
j
∂f
∂yj

(~x∗, ~y∗)

y∗i = 0⇒ ∂f
∂yi

(~x∗, ~y∗) ≤
∑m

j=1 y
∗
j
∂f
∂yj

(~x∗, ~y∗)

for player ~y.

(3.4)

Remark 3.2.1 (No degeneracies). For the rest of the paper we assume no degeneracies, i.e., the

last inequalities hold strictly (in the case a strategy is played with zero probability for each player).

Moreover, it is easy to see that since f is convex concave and twice differentiable, then ∇2
~x~xf (part

of the Hessian that involves ~x variables) is positive semi-definite and ∇2
~y~yf (part of the Hessian

that involves ~y variables) is negative semi-definite.

3.2.2 Optimistic Multiplicative Weights Update

The equations of Optimistic Follow-the-Regularized-Leader (OFTRL) applied to a problem

min~x∈X max~y∈Y f(~x, ~y) with regularizers (strongly convex functions) h1(~x), h2(~y) (for player ~x, ~y

respectively) and X ⊂ R
n,Y ⊂ R

m is given below (see [39]):

~xt+1 = arg min
~x∈X

{η
t∑

s=1

~x>∇~xf(~xs, ~ys) + η~x>∇~xf(~xt, ~yt)︸ ︷︷ ︸
optimistic term

+h1(~x)}

~yt+1 = arg max
~y∈Y

{η
t∑

s=1

~y>∇~yf(~xs, ~ys) + η~y>∇~yf(~xt, ~yt)︸ ︷︷ ︸
optimistic term

−h2(~y)}.

η is called the stepsize of the online algorithm. OFTRL is uniquely defined if f is convex-concave

and domains X and Y are convex. For simplex constraints and entropy regularizers, i.e., h1(~x) =
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∑
i xi lnxi, h2(~y) =

∑
i yi ln yi, we can solve for the explicit form of OFTRL using KKT conditions,

the update rule is the Optimistic Multiplicative Weights Update (OMWU) and is described as

follows:

xt+1
i = xti

e
−2η ∂f

∂xi
(~xt,~yt)+η ∂f

∂xi
(~xt−1,~yt−1)∑

k x
t
ke
−2η ∂f

∂xk
(~xt,~yt)+η ∂f

∂xk
(~xt−1,~yt−1)

for all i ∈ [n],

yt+1
i = yti

e
2η ∂f

∂yi
(~xt,~yt)−η ∂f

∂yi
(~xt−1,~yt−1)∑

k y
t
ke

2η ∂f
∂yj

(~xt,~yt)−η ∂f
∂yk

(~xt−1,~yt−1)

for all i ∈ [m].

3.2.3 Fundamentals of Dynamical Systems

We conclude Preliminaries section with some basic facts from dynamical systems.

Definition 3.2.2. A recurrence relation of the form ~xt+1 = w(~xt) is a discrete time dynamical

system, with update rule w : S→ S where S is a subset of Rk for some positive integer k. The point

~z ∈ S is called a fixed point if w(~z) = ~z.

Remark 3.2.2. Using KKT conditions (3.4), it is not hard to observe that an equilibrium point

(~x∗, ~y∗) must be a fixed point of the OMWU algorithm, i.e., if (~xt, ~yt) = (~xt−1, ~yt−1) = (~x∗, ~y∗) then

(~xt+1, ~yt+1) = (~x∗, ~y∗).

Proposition 3.2.3 ([54]). Assume that w is a differentiable function and the Jacobian of the

update rule w at a fixed point ~z∗ has spectral radius less than one. It holds that there exists a

neighborhood U around ~z∗ such that for all ~z0 ∈ U , the dynamics ~zt+1 = w(~zt) converges to ~z∗,

i.e. limn→∞w
n(~z0) = ~z∗ 4. w is called a contraction mapping in U .

4wn denotes the composition of w with itself n times.
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Note that we will make use of Proposition 3.2.3 to prove our Theorem 3.1.1 (by proving

that the Jacobian of the update rule of OMWU has spectral radius less than one).

3.3 Last iterate convergence of OMWU

In this section, we prove that OMWU converges pointwise (exhibits last iterate convergence)

if the initializations (~x0, ~y0), (~x1, ~y1) belong in a neighborhood U of the equilibrium (~x∗, ~y∗).

3.3.1 Dynamical System of OMWU

We first express OMWU algorithm as a dynamical system so that we can use Proposition

3.2.3. The idea (similar to [40]) is to lift the space to consist of four components (~x, ~y, ~z, ~w, in such

a way we can include the history (current and previous step, see Section 3.2.2 for the equations).

First, we provide the update rule g : ∆n ×∆m ×∆n ×∆m → ∆n ×∆m ×∆n ×∆m of the lifted

dynamical system and is given by

g(~x, ~y, ~z, ~w) = (g1, g2, g3, g4)

where gi = gi(~x, ~y, ~z, ~w) for i ∈ [4] are defined as follows:

g1,i(~x, ~y, ~z, ~w) = xi
e
−2η ∂f

∂xi
(~x,~y)+η ∂f

∂zi
(~z, ~w)∑

k xke
−2η ∂f

∂xk
(~x,~y)+η ∂f

∂zk
(~z, ~w)

, i ∈ [n] (3.5)

g2,i(~x, ~y, ~z, ~w) = yi
e

2η ∂f
∂yi

(~x,~y)−η ∂f
∂wi

(~z, ~w)∑
k yke

2η ∂f
∂yk

(~x,~y)−η ∂f
∂wk

(~z, ~w)
, i ∈ [m] (3.6)

g3(~x, ~y, ~z, ~w) = ~x or g3,i(~x, ~y, ~z, ~w) = xi, i ∈ [n] (3.7)

g4(~x, ~y, ~z, ~w) = ~y or g4,i(~x, ~y, ~z, ~w) = yi, i ∈ [m]. (3.8)
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Then the dynamical system of OMWU can be written in compact form as

(~xt+1, ~yt+1, ~xt, ~yt) = g(~xt, ~yt, ~xt−1, ~yt−1).

In what follows, we will perform spectral analysis on the Jacobian of the function g, computed at

the fixed point (~x∗, ~y∗). Since g has been lifted, the fixed point we analyze is (~x∗, ~y∗, ~x∗, ~y∗) (see

Remark 3.2.2). By showing that the spectral radius is less than one, our Theorem 3.1.1 follows

by Proposition 3.2.3. The computations of the Jacobian of g are deferred to the supplementary

material.

3.3.2 Spectral Analysis

Let (~x∗, ~y∗) be the equilibrium of min-max problem (3.2). Assume i /∈ Supp(~x∗), i.e.,

x∗i = 0 then (see equations at the supplementary material, section A)

∂g1,i

∂xi
(~x∗, ~y∗, ~x∗, ~y∗) =

e
−η ∂f

∂xi
(~x∗,~y∗)∑n

t=1 x
∗
t e
−η ∂f

∂xt
(~x∗,~y∗)

and all other partial derivatives of g1,i are zero, thus e
−η ∂f

∂xi
(~x∗,~y∗)

∑n
t=1 x

∗
t e
−η ∂f

∂xt
(~x∗,~y∗)

is an eigenvalue of the

Jacobian computed at (~x∗, ~y∗, ~x∗, ~y∗). This is true because the row of the Jacobian that corresponds

to g1,i has zeros everywhere but the diagonal entry. Moreover because of the degeneracy assumption

of KKT conditions (see Remark 3.2.1), it holds that

e
−η ∂f

∂xi
(~x∗,~y∗)∑n

t=1 x
∗
t e
−η ∂f

∂xt
(~x∗,~y∗)

< 1.

Similarly, it holds for j /∈ Supp(~y∗) that

∂g2,j

∂yj
(~x∗, ~y∗, ~x∗, ~y∗) =

e
η ∂f
∂yj

(~x∗,~y∗)∑m
t=1 y

∗
t e
η ∂f
∂yt

(~x∗,~y∗)
< 1
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(again by Remark 3.2.1) and all other partial derivatives of g2,j are zero, therefore e
η
∂f
∂yj

(~x∗,~y∗)

∑m
t=1 y

∗
t e
η
∂f
∂yt

(~x∗,~y∗)

is an eigenvalue of the Jacobian computed at (~x∗, ~y∗, ~x∗, ~y∗).

We focus on the submatrix of the Jacobian of g computed at (~x∗, ~y∗, ~x∗, ~y∗) that corresponds

to the non-zero probabilities of ~x∗ and ~y∗. We denote D~x∗ to be the diagonal matrix of size

|Supp(~x∗)| × |Supp(~x∗)| that has on the diagonal the nonzero entries of ~x∗ and similarly we

define D~y∗ of size |Supp(~y∗)| × |Supp(~y∗)|. For convenience, let us denote kx := |Supp(~x∗)| and

ky := |Supp(~y∗)|. The Jacobian submatrix is the following

J =


A11 A12 A13 A14

A21 A22 A23 A24

~Ikx×kx ~0kx×ky ~0kx×kx ~0kx×ky
~0ky×kx ~Iky×ky ~0ky×kx ~0ky×ky


where

A11 = ~Ikx×kx −D~x∗
~1kx~1

>
kx − 2ηD~x∗(~Ikx×kx −~1kx~x∗>)∇2

~x~xf

A12 = −2ηD~x∗(~Ikx×kx −~1kx~x∗>)∇2
~x~yf

A13 = ηD~x∗(~Ikx×kx −~1kx~x∗>)∇2
~x~xf

A14 = ηD~x∗(~Ikx×kx −~1kx~x∗>)∇2
~x~yf

A21 = 2ηD~y∗(~Iky×ky −~1ky~y∗>)∇2
~y~xf

A22 = ~Iky×ky −D~y∗
~1ky~1

>
ky + 2ηD~y∗(~Iky×ky −~1ky~y∗>)∇2

~y~yf

A23 = −ηD~y∗(~Iky×ky −~1ky~y∗>)∇2
~y~xf

A24 = −ηD~y∗(~Iky×ky −~1ky~y∗>)∇2
~y~yf.

(3.9)

We note that ~I,~0 capture the identity matrix and the all zeros matrix respectively (the appropriate

size is indicated as a subscript). The vectors (~1kx ,~0ky ,~0kx ,~0ky) and (~0kx ,~1ky ,~0kx ,~0ky) are left

eigenvectors with eigenvalue zero for the above matrix. Hence, any right eigenvector (~vx, ~vy, ~vz, ~vw)
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should satisfy the conditions ~1> ~vx = 0 and ~1> ~vy = 0. Thus, every non-zero eigenvalue of the above

matrix is also a non-zero eigenvalue of the matrix below:

Jnew =


B11 A12 A13 A14

A21 B22 A23 A24

~Ikx×kx ~0kx×ky ~0kx×kx ~0kx×ky
~0ky×kx ~Iky×ky ~0ky×kx ~0ky×ky


where

B11 = ~Ikx×kx − 2ηD~x∗(~Ikx×kx −~1kx~x∗>)∇2
~x~xf,

B22 = ~Iky×ky + 2ηD~y∗(~Iky×ky −~1ky~y∗>)∇2
~y~yf.

The characteristic polynomial of Jnew is obtained by finding det(Jnew − λ~I). One can perform

row/column operations on Jnew to calculate this determinant, which gives us the following relation:

det(Jnew − λ~I2kx×2ky) = (1− 2λ)(kx+ky) q

(
λ(λ− 1)

2λ− 1

)
where q(λ) is the characteristic polynomial of the following matrix

Jsmall =

[
B11 − ~Ikx×kx A12

A21 B22 − ~Iky×ky ,

]
and B11, B12, A12, A21 are the aforementioned sub-matrices. Notice that Jsmall can be written as

Jsmall = 2η

[
−(D~x∗ − ~x∗~x∗>) ~0kx×ky

~0ky×kx (D~y∗ − ~y∗~y∗>)

]
H

where,

H =

[
∇2
~x~xf ∇2

~x~yf

∇2
~y~xf ∇2

~y~yf

]
Notice here that H is the Hessian matrix evaluated at the fixed point (~x∗, ~y∗), and is the appropriate

sub-matrix restricted to the support of |Supp(~y∗)| and |Supp(~x∗)|. Although, the Hessian matrix is

symmetric, we would like to work with the following representation of Jsmall:

Jsmall = 2η

[
(D~x∗ − ~x∗~x∗>) ~0kx×ky

~0ky×kx (D~y∗ − ~y∗~y∗>)

]
H−
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where,

H− =

[
−∇2

~x~xf −∇2
~x~yf

∇2
~y~xf ∇2

~y~yf

]
Let us denote any non-zero eigenvalue of Jsmall by ε which may be a complex number. Thus

ε is where q(·) vanishes and hence the eigenvalue of Jnew must satisfy the relation

λ(λ− 1)

2λ− 1
= ε

We are to now show that the magnitude of any eigenvalue of Jnew is strictly less than 1, i.e,

|λ| < 1. Trivially, λ = 1
2

satisfies the above condition. Thus we need to show that the magnitude of

λ where q(·) vanishes is strictly less than 1. The remainder of the proof proceeds by showing the

following two lemmas:

Lemma 3.3.1 (Real part non-positive). Let λ be an eigenvalue of matrix Jsmall. It holds that

Re(λ) ≤ 0.

(a) #iterations vs size of n (b) l1 error vs #iterations

Figure 3.1: Convergence of OMWU vs different sizes of the problem. For Figure (a), x-axis is n and
y-axis is the number of iterations to reach convergence for Eqn. (3.14). In Figure (b) we choose
four cases of n to illustrate how l1 error of the problem decreases with the number of iterations.
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Proof. Assume that λ 6= 0. All the non-zero eigenvalues of matrix Jsmall coincide with the eigenval-

ues of the matrix

R :=

[
(D~x∗ − ~x∗~x∗>) ~0kx×ky

~0ky×kx (D~y∗ − ~y∗~y∗>)

]1/2

×H− ×
[

(D~x∗ − ~x∗~x∗>) ~0kx×ky
~0ky×kx (D~y∗ − ~y∗~y∗>)

]1/2

.

This is well-defined since [
(D~x∗ − ~x∗~x∗>) ~0kx×ky

~0ky×kx (D~y∗ − ~y∗~y∗>)

]
is positive semi-definite. Moreover, we use KyFan inequalities which state that the sequence (in

decreasing order) of the eigenvalues of 1
2
(W +W>) majorizes the real part of the sequence of the

eigenvalues of W for any square matrix W (see [120], page 4). We conclude that for any eigenvalue

λ of R, it holds that Re(λ) is at most the maximum eigenvalue of 1
2
(R +R>). Observe now that

R +R> :=

[
(D~x∗ − ~x∗~x∗>) ~0kx×ky

~0ky×kx (D~y∗ − ~y∗~y∗>)

]1/2

×

(H− +H−>)×
[

(D~x∗ − ~x∗~x∗>) ~0kx×ky
~0ky×kx (D~y∗ − ~y∗~y∗>)

]1/2

.

Since

H− +H−> =

[
−∇2

~x~xf 0
0 ∇2

~y~yf

]
by the convex-concave assumption on f it follows that the matrix above is negative semi-definite

(see Remark 3.2.1) and so is R + R>. We conclude that the maximum eigenvalue of R + R> is

non-positive. Therefore any eigenvalue of R has real part non-positive and the same is true for

Jsmall.

Lemma 3.3.2. If ε is a non-zero eigenvalue of Jsmall then, Re(ε) ≤ 0 and |ε| ↓ 0 as the stepsize

η → 0.

42



We first can see that η which is the learning rate multiplies any eigenvalue and we may

assume that whilst η is positive, it may be chosen to be sufficiently small and hence the magnitude

of any eigenvalue |ε| ↓ 0.

Remark 3.3.1. The equation ε = λ(λ−1)
2λ−1

determines two complex roots for each fixed ε, say λ1 and

λ2. The relation between |ε|, |λ1| and |λ2| is illustrated in Figure 3.2, where the x-axis is taken to

be ∝ exp(1/ |ε|). Specifically we choose ε = −1/ log(x) + 1/ log(x)
√
−1 that satisfies |ε| ↓ 0 as

x→∞ (The x-axis of Figure 3.2 takes x from 3 to 103).

Figure 3.2: λ1 and λ2 less than 1 as |ε| is small.

Proof. Let λ = x+
√
−1y and ε = a+

√
−1b. The relation λ(λ−1)

2λ−1
= ε gives two equations based

on the equality of real and imaginary parts as follows,

x2 − x− y2 = 2ax− a− 2by (3.10)

2xy − y = 2bx+ 2ay − b. (3.11)

Notice that the above equations can be transformed to the following forms:

(x− 2a+ 1

2
)2 − (y − b)2 = −a− b2 +

(2a+ 1)2

4
(3.12)

43



(x− 2a+ 1

2
)(y − b) = ab. (3.13)

For each ε = a+
√
−1b, there exist two pairs of points (x1, y1) and (x2, y2) that are the intersections

of the above two hyperbola, illustrated in Figure 3.4. Recall the condition that a < 0. As |ε| → 0,

the hyperbola can be obtained from the translation by (2a+1
2
, b) of the hyperbola

x2 − y2 = −a− b2 +
(2a+ 1)2

4

xy = ab

where the translated symmetric center is close to (1
2
, 0) since (a, b) is close to (0, 0). So the two

intersections of the above hyperbola, (x1, y1) and (x2, y2), satisfy the property that x2
1 + y2

1 is small

and x2 >
1
2

since the two intersections are on two sides of the axis x = 2a+1
2

, as showed in Figure

3.3. On the other hand, we have

ab < 0 ab > 0

Figure 3.3: The intersections of the four branches of hyperbola are the two solutions of the equations
(3.10) or (3.12). The intersections are on two sides of the line defined by x = 2a+1

2
, provided |b| is

small and a < 0. This occurs in the case either ab > 0 or ab < 0.

λ(λ− 1)

2λ− 1
=

(x+
√
−1y)(x− 1 +

√
−1y)

2x− 1 +
√
−12y

= ε = a+
√
−1b
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and then the condition a < 0 gives the inequality

Re(ε) =
(x2 − x+ y2)(2x− 1)

(2x− 1)2 + 4y2
< 0

that is equivalent to

x >
1

2
and x2 − x+ y2 < 0

where only the case x > 1
2

is considered since if the intersection whose x-component satisfying

x < 1
2

has the property that x2 + y2 is small and then less than 1, Figure 3.4. Thus to prove that

|λ| < 1, it suffices to assume x > 1
2
. It is obvious that x2−x+ y2 = (x− 1

2
)2 + y2− 1

4
< 0 implies

that x2 + y2 < 1. The proof completes.

Figure 3.4: a = −0.1, b = 0.1
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(a) OMWU (b) OGDA

(c) Convergence time comparisons (d) OMWU trajectories with different learning rate

Figure 3.5: Time comparisons of OMWU and projected OGDA vs different choices of learning
rate. For Figure (a)(b)(c), x-axis is iterations and y-axis is the l1 error to the stationary point for
Eqn. (3.14) with n = 100. We observe that OMWU (as in (a)) always converges while projected
OGDA (as in (b)) will diverge for large learning rate. In figure (c) we remove the divergent case
and compare the efficiency of the two algorithm measured in CPU time. In Figure (d) we visually
present the trajectories for the min-max game of min~x∈∆2 max~y∈∆2{x2

1− y2
1 + 2x1y1} with learning

rate 0.1, 1.0 and 10. Here x-axis is the value of x1 and y-axis is the value of y1 respectively. The
equilibrium point the algorithm converges to is ~x = [0, 1], ~y = [0, 1].
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(a) KL divergence vs #iterations with different n (b) KL divergence vs #iterations with different η

Figure 3.6: KL divergence decreases with #iterations under different settings. For both images,
x-axis is the number of iterations, and y-axis is KL divergence. Figure (a) is OMWU on bilinear
function Eqn.(3.14) with n = {25, 100, 175, 250}. Figure (b) is OMWU on the quadratic function
f(~x, ~y) = x2

1 − y2
1 + 2x1y1 with different learning rate η in {0.01, 0.1, 1.0, 10.0}. Shaded area

indicates standard deviation from 10 runs with random initializations. OMWU with smaller learning
rate tends to have higher variance.

3.4 Experiments

In this section, we conduct empirical studies to verify the theoretical results of our paper.

We primarily target to understand two factors that influence the convergence speed of OMWU:

the problem size and the learning rate. We also compare our algorithm with Optimistic Gradient

Descent Ascent (OGDA) with projection, and demonstrate our superiority against it.

We start with a simple bilinear min-max game:

min
~x∈∆n

max
~y∈∆n

~x>A~y. (3.14)

We first vary the value of n to study how the learning speed scales with the size of the problem.

The learning rate is fixed at 1.0, and we run OMWU with n ∈ {25, 50, 75, · · · , 250} and matrix

A ∈ Rn×n is generated with i.i.d random Gaussian entries. We output the number of iterations for
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OMWU to reach convergence, i.e., with l1 error to the optimal solution to be less or equal to 10−5.

The results are averaged from 10 runs with different randomly initializations. As reported in Figure

3.1, generally a larger problem size requires more iterations to reach convergence. We also provide

four specific cases of n to show the convergence in l1 distance in Figure 3.1(b). The shaded area

demonstrates the standard deviation from the 50 runs.

To understand how learning rate affects the speed of convergence, we conduct similar

experiments on Eqn. (3.14) and plot the l1 error with different step sizes in Figure 3.5(a)-(c).

For this experiment the matrix size is fixed as n = 100. We also include a comparison with

the Optimistic Gradient Descent Ascent[41]. Notice the original proposal was for unconstrained

problems and we use projection in each step in order to constrain the iterates to stay inside the

simplex. For the setting we considered, we observe a larger learning rate effectively speeds up

our learning process, and our algorithm is relatively more stable to the choice of step-size. In

comparison, OGDA is quite sensitive to the choice of step-size. As shown in Figure 3.5(b), a larger

step-size makes the algorithm diverge, while a smaller step-size will make very little progress.

Furthermore, we also choose to perform our algorithm over a convex-concave but not bilinear

function f(~x, ~y) = x2
1 − y2

1 + 2x1y1, where ~x, ~y ∈ ∆2 and x1 and y1 are the first coefficients of ~x

and ~y. With this low dimensional function, we could visually show the convergence procedure as in

Figure 3.5(b), where each arrow indicates an OMWU step. This figure demonstrates that at least in

this case, a larger step size usually makes sure a bigger progress towards the optimal solution.

Finally we show how the KL divergence DKL((~x∗, ~y∗) ‖ (~xt, ~yt)) decreases under different

circumstances. Figure 3.6 again considers the bilinear problem (Eqn.(3.14)) with multiple dimen-

sions n and a simple convex-concave function f(~x, ~y) = x2
1 − y2

1 + 2x1y1 with different learning

rate. We note that in all circumstances we consider, we observe that OMWU is very stable, and
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achieves global convergence invariant to the problem size, random initialization, and learning rate.

3.5 Conclusion

In this paper we analyze the last iterate behavior of a no-regret learning algorithm called

Optimistic Multiplicative Weights Update for convex-concave landscapes. We prove that OMWU

exhibits last iterate convergence in a neighborhood of the fixed point of OMWU algorithm, general-

izing previous results that showed last iterate convergence for bilinear functions. The experiments

explores how the problem size and the choice of learning rate affect the performance of our al-

gorithm. We find that OMWU achieves global convergence and less sensitive to the choice of

hyperparameter, compared to projected optimistic gradient descent ascent.
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Chapter 4

Non-Convex-Concave Objective: On Learning Generative
Models
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Generative adversarial networks (GANs) are a widely used framework for learning generative

models. Wasserstein GANs (WGANs), one of the most successful variants of GANs, require solving

a minmax optimization problem to global optimality, but are in practice successfully trained using

stochastic gradient descent-ascent. In this paper, we show that, when the generator is a one-layer

network, stochastic gradient descent-ascent converges to a global solution with polynomial time

and sample complexity.1

4.1 Introduction

Generative Adversarial Networks (GANs) [61] are a prominent framework for learning

generative models of complex, real-world distributions given samples from these distributions.

GANs and their variants have been successfully applied to numerous datasets and tasks, including

image-to-image translation [69], image super-resolution [88], domain adaptation [157], probabilistic

inference [50], compressed sensing [17, 92] and many more. These advances owe in part to

the success of Wasserstein GANs (WGANs) [7, 65], leveraging the neural net induced integral

probability metric to better measure the difference between a target and a generated distribution.

Along with the aforementioned empirical successes, there have been theoretical studies of

the statistical properties of GANs—see e.g. [176, 9, 12, 13, 50] and their references. These works

have shown that, with an appropriate design of the generator and discriminator, the global optimum

of the WGAN objective identifies the target distribution with low sample complexity. However,

these results cannot be algorithmically attained via practical GAN training algorithms.

1This work is based on the following arXiv paper:
Qi Lei, Jason D. Lee, Alexandros G. Dimakis, Constantinos Daskalakis. “SGD Learns One-Layer Networks in
WGANs”, arXiv preprint arXiv:1910.07030 [93]
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On the algorithmic front, prior work has focused on the stability and convergence properties

of gradient descent-ascent (GDA) and its variants in GAN training and more general min-max

optimization problems; see e.g. [121, 67, 115, 114, 39, 40, 41, 59, 103, 118, 72, 105] and their

references. These works have studied conditions under which GDA converges to a globally optimal

solution in the convex-concave objective, or local stability in the non-convex non-concave setting.

These results do not ensure convergence to a globally optimal generator, or in fact even convergence

to a locally optimal generator.

Thus a natural question is whether:

Are GANs able to learn high-dimensional distributions in polynomial time and

polynomial/parametric sample complexity, and thus bypass the curse of dimensionality?

The aforementioned prior works stop short of this goal due to a) the intractability of min-max opti-

mization in the non-convex setting, and b) the curse of dimensionality in learning with Wasserstein

distance in high dimensions [13].

A notable exception is [52] which shows that for WGANs with a linear generator and

quadratic discriminator GDA succeeds in learning a Gaussian using polynomially many samples in

the dimension.

In the same vein, we are the first to our knowledge to study the global convergence properties

of stochastic GDA in the GAN setting, and establishing such guarantees for non-linear generators.

In particular, we study the WGAN formulation for learning a single-layer generative model with

some reasonable choices of activations including tanh, sigmoid and leaky ReLU.

Our contributions. For WGAN with a one-layer generator network using an activation

from a large family of functions and a quadratic discriminator, we show that stochastic gradient
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descent-ascent learns a target distribution using polynomial time and samples, under the assumption

that the target distribution is realizable in the architecture of the generator. This is achieved by

simultaneously satisfying the following two criterion:

1. Proving that stochastic gradient-descent attains a globally optimal generator in the metric

induced by the discriminator,

2. Proving that appropriate design of the discriminator ensures a parametric O( 1√
n
) statistical

rate [176, 13] that matches the lower bound for learning one-layer generators as shown in

[166].

4.2 Related Work

We briefly review relevant results in GAN training and learning generative models:

4.2.1 Optimization viewpoint

For standard GANs and WGANs with appropriate regularization, [121], [115] and [67]

establish sufficient conditions to achieve local convergence and stability properties for GAN training.

At the equilibrium point, if the Jacobian of the associated gradient vector field has only eigenvalues

with negative real-part, GAN training is verified to converge locally for small enough learning rates.

A follow-up paper by [114] shows the necessity of these conditions by identifying a counterexample

that fails to converge locally for gradient descent based GAN optimization. The lack of global

convergence prevents the analysis from yielding any guarantees for learning the real distribution.

The work of [52] described above has similar goals as our paper, namely understanding

the convergence properties of basic dynamics in simple WGAN formulations. However, they only
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consider linear generators, which restrict the WGAN model to learning a Gaussian. Our work goes

a step further, considering WGANs whose generators are one-layer neural networks with a broad

selection of activations. We show that with a proper gradient-based algorithm, we can still recover

the ground truth parameters of the underlying distribution.

More broadly, WGANs typically result in nonconvex-nonconcave min-max optimization

problems. In these problems, a global min-max solution may not exist, and there are various notions

of local min-max solutions, namely local min-local max solutions [41], and local min solutions of the

max objective [72], the latter being guaranteed to exist under mild conditions. In fact, [105] show that

GDA is able to find stationary points of the max objective in nonconvex-concave objectives. Given

that GDA may not even converge for convex-concave objectives, another line of work has studied

variants of GDA that exhibit global convergence to the min-max solution [39, 40, 59, 103, 118],

which is established for GDA variants that add negative momentum to the dynamics. While the

convergence of GDA with negative momentum is shown in convex-concave settings, there is

experimental evidence supporting that it improves GAN training [39, 59].

4.2.2 Statistical viewpoint

Several works have studied the issue of mode collapse. One might doubt the ability of GANs

to actually learn the distribution vs just memorize the training data [9, 12, 50]. Some corresponding

cures have been proposed. For instance, [176, 13] show for specific generators combined with

appropriate parametric discriminator design, WGANs can attain parametric statistical rates, avoiding

the exponential in dimension sample complexity [102, 13, 52].

Recent work of [166] provides an algorithm to learn the distribution of a single-layer

ReLU generator network. While our conclusion appears similar, our focus is very different. Our
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paper targets understanding when a WGAN formulation trained with stochastic GDA can learn

in polynomial time and sample complexity. Their work instead relies on a specifically tailored

algorithm for learning truncated normal distributions [38].

4.3 Preliminaries

Notation. We consider GAN formulations for learning a generator GA : Rk → R
d of the

form z 7→ x = φ(Az), where A is a d × k parameter matrix and φ some activation function.

We consider discriminators Dv : Rd → R or DV : Rd → R respectively when the discriminator

functions are parametrized by either vectors or matrices. We assume latent variables z are sampled

from the normal N(0, Ik×k), where Ik×k denotes the identity matrix of size k. The real/target

distribution outputs samples x ∼ D = GA∗(N(0, Ik0×k0)), for some ground truth parameters A∗,

where A∗ is d× k0, and we take k ≥ k0 for enough expressivity, taking k = d when k0 is unknown.

The Wasserstain GAN under our choice of generator and discriminator is naturally formu-

lated as:

min
A∈Rd×k

max
v∈Rd

f(A,v), 2

for f(A,v) ≡ Ex∼DDv(x)− Ez∼N(0,Ik×k) Dv(GA(z)).

We use ai to denote the i-th row vector of A. We sometimes omit the 2 subscript, using

‖x‖ to denote the 2-norm of vector x, and ‖X‖ to denote the spectral norm of matrix X when

there is no ambiguity. Sn ⊂ R
n×n represents all the symmetric matrices of dimension n× n. We

use Df(X0)[B] to denote the directional derivative of function f at point X0 with direction B:

Df(X0)[B] = limt→0
f(X0+tB)−f(X0)

t
.

2We will replace v by matrix parameters V ∈ Rd×d when necessary.
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4.3.1 Motivation and Discussion

To provably learn one-layer generators with nonlinear activations, the design of the discrimi-

nator must strike a delicate balance:

1. (Approximation.) The discriminator should be large enough to be able to distinguish the

true distribution from incorrect generated ones. To be more specific, the max function

g(A) = maxx f(A, V ) captures some distance from our learned generator to the target

generators. This distance should only have global minima that correspond to the ground truth

distribution.

2. (Generalizability.) The discriminator should be small enough so that it can be learned with

few samples. In fact, our method guarantees an O(1/
√
n) parametric rate that matches the

lower bound established in [166].

3. (Stability.) The discriminator should be carefully designed so that simple local algorithms

such as gradient descent ascent can find the global optimal point.

Further, min-max optimization with non-convexity in either side is intractable. In fact, gradient

descent ascent does not even yield last iterate convergence for bilinear forms, and it requires more

carefully designed algorithms like Optimistic Gradient Descent Ascent [41] and Extra-gradient

methods [84]. In this paper we show a stronger hardness result. We show that for simple bilinear

forms with ReLU activations, it is NP-hard to even find a stationary point.

Theorem 4.3.1. Consider the min-max optimization on the following ReLU-bilinear form:

min
x

max
y

{
f(x,y) =

n∑
i=1

φ(Aix + bi)
>y

}
,
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where x ∈ Rd, Ai ∈ RO(d)×d and φ is ReLU activation. As long as n ≥ 4, the problem of checking

whether f has any stationary point is NP-hard in d.

We defer the proof to the Appendix where we show 3SAT is reducible to the above problem.

This theorem shows that in general, adding non-linearity (non-convexity) in min-max forms makes

the problem intractable. However, we are able to show gradient descent ascent finds global

minima for training one-layer generators with non-linearity. This will rely on carefully designed

discriminators, regularization and specific structure that we considered.

Finally we note that understanding the process of learning one-layer generative model is

important in practice as well. For instance, Progressive GAN [78] proposes the methodology to

learn one-layer at a time, and grow both the generator and discriminator progressively during

the learning process. Our analysis implies further theoretical support for this kind of progressive

learning procedure.

4.4 Warm-up: Learning the Marginal Distributions

As a warm-up, we ask whether a simple linear discriminator is sufficient for the purposes of

learning the marginal distributions of all coordinates of D. Notice that in our setting, the i-th output

of the generator is φ(x) where x ∼ N(0, ‖ai‖2), and is thus solely determined by ‖ai‖2. With a

linear discriminator Dv(x) = v>x, our minimax game becomes:

min
A∈Rd×k

max
v∈Rd

f1(A,v), (4.1)

for f1(A,v) ≡ Ex∼D
[
v>x

]
− Ez∼N(0,Ik×k)

[
v>φ(Az)

]
.

Notice that when the activation φ is an odd function, such as the tanh activation, the

symmetric property of the Gaussian distribution ensures that Ex∼D[v>x] = 0, hence the linear
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discriminator in f1 reveals no information about A∗. Therefore specifically for odd activations

(or odd plus a constant activations), we instead use an adjusted rectified linear discriminator

Dv(x) ≡ v>R(x−C) to enforce some bias, where C = 1
2
(φ(x) +φ(−x)) for all x, and R denotes

the ReLU activation. Formally, we slightly modify our loss function as:

f̄1(A,v) ≡Ex∼D
[
v>R(x− C)

]
− Ez∼N(0,Ik×k)

[
v>R(φ(Az)− C)

]
. (4.2)

We will show that we can learn each marginal of D if the activation function φ satisfies the following.

Assumption 4.4.1. The activation function φ satisfies either one of the following:

1. φ is an odd function plus constant, and φ is monotone increasing;

2. The even component of φ, i.e. 1
2
(φ(x) + φ(−x)), is positive and monotone increasing on

x ∈ [0,∞).

Remark 4.4.1. All common activation functions like (Leaky) ReLU, tanh or sigmoid function satisfy

Assumption 4.4.1.

Lemma 4.4.1. Suppose A∗ 6= 0. Consider f1 with activation that satisfies Assumption 4.4.1.2 and

f̄1 with activation that satisfies Assumption 4.4.1.1. The stationary points of such f1 and f̄1 yield

parameters A satisfying ‖ai‖ = ‖a∗i ‖,∀i ∈ [d].

To bound the capacity of the discriminator, WGAN adds an Lipschitz constraint: ‖Dv‖ ≤ 1,

or simply ‖v‖2 ≤ 1. To make the training process easier, we instead regularize the discriminator.

For the regularized formulation we have:
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Theorem 4.4.2. In the same setting as Lemma 4.4.1, alternating gradient descent-ascent with

proper learning rates on

min
A

max
v
{f1(A,v)− ‖v‖2/2},

or respectively min
A

max
v
{f̄1(A,v)− ‖v‖2/2},

recovers A such that ‖ai‖ = ‖a∗i ‖,∀i ∈ [d].

All the proofs of the paper can be found in the appendix. We show that all local min-max

points in the sense of [72] of the original problem are global min-max points and recover the correct

norm of a∗i ,∀i. Notice for the source data distribution x = (x1, x2, · · · xd) ∼ D with activation φ,

the marginal distribution of each xi follows φ(N(0, ‖a∗i ‖2)) and is determined by ‖a∗i ‖. Therefore

we have learned the marginal distribution for each entry i. It remains to learn the joint distribution.

4.5 Learning the Joint Distribution

In the previous section, we utilize a (rectified) linear discriminator, such that each coordinate

vi interacts with the i-th random variable. With the (rectified) linear discriminator, WGAN learns

the correct ‖ai‖, for all i. However, since there’s no interaction between different coordinates of the

random vector, we do not expect to learn the joint distribution with a linear discriminator.

To proceed, a natural idea is to use a quadratic discriminator DV (x) := x>V x = 〈xx>, V 〉

to enforce component interactions. Similar to the previous section, we study the regularized version:

min
A∈Rd×k

max
V ∈Rd×d

{f2(A, V )− 1

2
‖V ‖2

F}, (4.3)

where

f2(A, V )
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=Ex∼DDV (x)− Ez∼N(0,Ik×k) DV (φ(Az))

=
〈
Ex∼D

[
xx>

]
− Ez∼N(0,Ik×k)

[
φ(Az)φ(Az)>

]
, V
〉
.

By adding a regularizer on V and explicitly maximizing over V :

g(A) ≡ max
V

{
f2(A, V )− 1

2
‖V ‖2

F

}
=

1

2

∥∥Ex∼D
[
xx>

]
−Ez∼N(0,Ik×k)

[
φ(Az)φ(Az)>

]∥∥2

F
.

In the next subsection, we first focus on analyzing the second-order stationary points of g, then we

establish that gradient descent ascent converges to second-order stationary points of g .

4.5.1 Global Convergence for Optimizing the Generating Parameters

We first assume that both A and A∗ have unit row vectors, and then extend to general

case since we already know how to learn the row norms from Section 4.4. To explicitly compute

g(A), we rely on the property of Hermite polynomials. Since normalized Hermite polynomials

{hi}∞i=0 forms an orthonomal basis in the functional space, we rewrite the activation function as

φ(x) =
∑∞

i=0 σihi, where σi is the i-th Hermite coefficient. We use the following claim:

Claim 4.5.1 ([58] Claim 4.2). Let φ be a function from R to R such that φ ∈ L2(R, e−x
2/2), and let

its Hermite expansion be φ =
∑∞

i=1 σihi. Then, for any unit vectors u,v ∈ Rd, we have that

Ex∼N(0,Id×d)

[
φ(u>x)φ(v>x)

]
=
∞∑
i=0

σ2
i (u

>v)i.

Therefore we could compute the value of f2 explicitly using the Hermite polynomial

expansion:

f2(A, V ) =

〈
∞∑
i=0

σ2
i

(
(A∗(A∗)>)◦i − (AA>)◦i

)
, V

〉
.
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Here X◦i is the Hadamard power operation where (X◦i)jk = (Xjk)
i. Therefore we have:

g(A) =
1

2

∥∥∥∥∥
∞∑
i=0

σ2
i

(
(A∗(A∗)>)◦i − (AA>)◦i

)∥∥∥∥∥
2

F

We reparametrize with Z = AA> and define g̃(Z) = g(A) with individual component functions

g̃jk(z) ≡ 1
2
(
∑∞

i=0 σ
2
i ((z

∗
jk)

i − zi))2. Accordingly z∗jk = 〈a∗j ,a∗k〉 is the (j, k)-th component of the

ground truth covariance matrix A∗(A∗)>.

Assumption 4.5.1. The activation function φ is an odd function plus constant. In other words, its

Hermite expansion φ =
∑∞

i=0 σihi satisfies σi = 0 for even i ≥ 2. Additionally we assume σ1 6= 0.

Remark 4.5.1. Common activations like tanh and sigmoid satisfy Assumption 4.5.1.

Lemma 4.5.2. For activations including leaky ReLU and functions satisfying Assumption 4.5.1,

g̃(Z) has a unique stationary point where Z = A∗(A∗)>.

Notice g̃(Z) =
∑

jk g̃jk(zjk) is separable across zjk, where each g̃jk is a polynomial scalar

function. Lemma 4.5.2 comes from the fact that the only zero point for g̃′jk is zjk = z∗jk, for odd

activation φ and leaky ReLU. Then we migrate this good property to the original problem we want

to solve:

Problem 1. We optimize over function g when ‖a∗i ‖ = 1,∀i:

min
A

g(A) ≡ 1

2

∥∥∥∥∥
∞∑
i=0

σ2
i

(
(A∗(A∗)>)◦i − (AA>)◦i

)∥∥∥∥∥
2

F


s.t. a>i ai = 1,∀i.
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Existing work [75] connects g̃(Z) to the optimization over factorized version for g(A)

(g(A) ≡ g̃(AA>)). Specifically, when k = d, all second-order stationary points for g(A) are

first-order stationary points for g̃(Z). Though g̃ is not convex, we are able to show that its first-order

stationary points are global optima when the generator is sufficiently expressive, i.e., k ≥ k0. In

reality we won’t know the latent dimension k0, therefore we just choose k = d for simplicity. We

get the following conclusion:

Theorem 4.5.3. For activations including leaky ReLU and functions satisfying Assumption 4.5.1,

when k = d, all second-order KKT points for problem 1 are global minima. Therefore alternating

projected gradient descent-ascent on Eqn. (4.3) converges to A such that AA> = A∗(A∗)>.

The extension for non-unit vectors is straightforward, and we defer the analysis to the

Appendix.

This main theorem demonstrates the success of gradient descent ascent on learning the

ground truth generator. This result is achieved by analyzing two factors. One is the geometric

property of our loss function, i.e., all second-order KKT points are global minima. Second, all global

minima satisfy AA> = A∗(A∗)>, and for the problem we considered, i.e., one-layer generators,

retrieving parameter AA> is sufficient in learning the whole generating distribution.

4.6 Finite Sample Analysis

In the previous section, we demonstrate the success of using gradient descent ascent on the

population risk. This leaves us the question on how many samples do we need to achieve small error.

In this section, we analyze Algorithm 3, i.e., gradient descent ascent on the following empirical
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Algorithm 3 Online stochastic gradient descent ascent on WGAN

1: Input: n training samples: x1,x2, · · ·xn, where each xi ∼ φ(A∗z), z ∼ N(0, Ik×k), learning
rate for generating parameters η, number of iterations T .

2: Random initialize generating matrix A(0).
3: for t = 1, 2, · · · , T do
4: Generate m latent variables z(t)

1 , z
(t)
2 , · · · , z(t)

m ∼ N(0, Ik×k) for the generator. The empirical
function becomes

f̃ (t)
m,n(A, V ) =

〈
1

m

m∑
i=1

φ(Az
(t)
i )φ(Az

(t)
i )> − 1

n

n∑
i=1

xix
>
i , V

〉
− 1

2
‖V ‖2

5: Gradient ascent on V with optimal step-size ηV = 1:

V (t) ← V (t) − ηV∇V f̃
(t)
m,n(A(t−1), V (t−1)).

6: Sample noise e uniformly from unit sphere
7: Projected Gradient Descent on A, with constraints C = {A|(AA>)ii = (A∗A∗>)ii} :

A(t) ← ProjC(A(t−1) − η(∇Af̃
(t)
m,n(A(t−1), V (t)) + e)).

8: end for
9: Output: A(T )(A(T ))>

loss:

f̃ (t)
m,n(A, V )

=

〈
1

m

m∑
i=1

φ(Az
(t)
i )φ(Az

(t)
i )> − 1

n

n∑
i=1

xix
>
i , V

〉
− 1

2
‖V ‖2.

Notice in each iteration, gradient ascent with step-size 1 finds the optimal solution for V . By

Danskin’s theorem [36], our min-max optimization is essentially gradient descent over g̃(t)
m,n(A) ≡

maxV f̃
(t)
m,n(A, V ) = 1

2
‖ 1
m

∑m
i=1 φ(Az

(t)
i )φ(Az

(t)
i )> − 1

n

∑n
i=1 xix

>
i ‖2

F with a batch of samples
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{z(t)
i }, i.e., stochastic gradient descent for fn(A) ≡ Ezi∼N(0,Ik×k),∀i∈[m][g̃m,n(A)].

Therefore to bound the difference between fn(A) and the population risk g(A), we analyze

the sample complexity required on the observation side (xi ∼ D, i ∈ [n]) and the mini-batch size

required on the learning part (φ(Azj), zj ∼ N(0, Ik×k), j ∈ [m]). We will show that with large

enough n,m, the algorithm specified in Algorithm 3 that optimizes over the empirical risk will

yield the ground truth covariance matrix with high probability.

Our proof sketch is roughly as follows:

1. With high probability, projected stochastic gradient descent finds a second order stationary

point Â of fn(·) as shown in Theorem 31 of [57].

2. For sufficiently large m, our empirical objective, though a biased estimator of the

population risk g(·), achieves good ε-approximation to the population risk on both the gradient and

Hessian (Lemmas 4.6.3&4.6.4). Therefore Â is also an O(ε)-approximate second order stationary

point (SOSP) for the population risk g(A).

3. We show that any ε-SOSP Â for g(A) yields an O(ε)-first order stationary point (FOSP)

Ẑ ≡ ÂÂ> for the semi-definite programming on g̃(Z) (Lemma 4.6.7).

4. We show that any O(ε)-FOSP of function g̃(Z) induces at most O(ε) absolute error

compared to the ground truth covariance matrix Z∗ = A∗(A∗)> (Lemma 4.6.8).

4.6.1 Observation Sample Complexity

For simplicity, we assume the activation and its gradient satisfy Lipschitz continuous, and

let the Lipschitz constants be 1 w.l.o.g.:

Assumption 4.6.1. Assume the activation is 1-Lipschitz and 1-smooth.
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To estimate observation sample complexity, we will bound the gradient and Hessian for the

population risk and empirical risk on the observation samples:

g(A)

≡1

2

∥∥Ex∼D
[
xx>

]
− Ez∼N(0,Ik×k)

[
φ(Az)φ(Az)>

]∥∥2

F
,

gn(A)

≡1

2

∥∥∥∥∥ 1

n

n∑
i=1

xix
>
i − Ez∼N(0,Ik×k)

[
φ(Az)φ(Az)>

]∥∥∥∥∥
2

F

.

We calculate the gradient estimation error due to finite samples.

Claim 4.6.1.

∇g(A)−∇gn(A)

= 2Ez

[
diag(φ′(Az))(X −Xn)φ(Az)z>

]
,

where X = Ex∼D[xx>], and Xn = 1
n

∑n
i=1 xix

>
i . The directional derivative with arbitrary

direction B is:

D∇g(A)[B]−D∇gn(A)[B]

=2Ez

[
diag(φ′(Az))(Xn −X)φ′(Az) ◦ (Bz)z>

]
+ 2Ez

[
diag(φ′′(Az) ◦ (Bz))(Xn −X)φ(Az)z>

]
Lemma 4.6.2. Suppose the activation satisfies Assumption 4.6.1. We get

Pr[‖X −Xn‖ ≤ ε‖X‖] ≥ 1− δ,

for n ≥ Θ̃(d/ε2 log2(1/δ))3.

3We will use Θ̃ throughout the paper to hide log factors of d for simplicity.
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Bounding the relative difference between sample and population covariance matrices is

essential for us to bound the estimation error in both gradient and its directional derivative. We can

show the following relative error:

Lemma 4.6.3. Suppose the activation satisfies Assumption 4.5.1&4.6.1. With samples n ≥

Θ̃(d/ε2 log2(1/δ)), we get:

‖∇g(A)−∇gn(A)‖2 ≤ O(εd‖A‖2),

with probability 1− δ. Meanwhile,

‖D∇g(A)[B]−D∇gn(A)[B]‖2 ≤ O(εd3/2‖A‖2‖B‖2),

with probability 1− δ.

4.6.2 Bounding Mini-batch Size

Normally for empirical risk for supervised learning, the mini-batch size can be arbitrarily

small since the estimator of the gradient is unbiased. However in the WGAN setting, notice for

each iteration, we randomly sample a batch of random variables {zi}i∈[m], and obtain a gradient of

g̃m,n(A) ≡ 1

2

∥∥∥∥∥ 1

n

n∑
i=1

xix
>
i −

1

m

m∑
j=1

φ(Azj)φ(Azj)
>

∥∥∥∥∥
2

F

,

in Algorithm 3. However, the finite sum is inside the Frobenius norm and the gradient on each

mini-batch may no longer be an unbiased estimator for our target

gn(A) =
1

2

∥∥∥∥∥ 1

n

n∑
i=1

xix
>
i − Ez

[
φ(Az)φ(Az)>

]∥∥∥∥∥
2

F

.
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In other words, we conduct stochastic gradient descent over the function f(A) ≡ Ez g̃m,n(A).

Therefore we just need to analyze the gradient error between this f(A) and gn(A) (i.e. g̃m,n is

almost an unbiased estimator of gn). Finally with the concentration bound derived in last section,

we get the error bound between f(A) and g(A).

Lemma 4.6.4. The empirical risk g̃m,n is almost an unbiased estimator of gn. Specifically, the

expected function f(A) = Ezi∼N(0,Ik×k),i∈[m][g̃m,n] satisfies:

‖∇f(A)−∇gn(A)‖ ≤ O(
1

m
‖A‖3d2).

For arbitrary direction matrix B,

‖D∇f(A)[B]−D∇gn(A)[B]‖ ≤ O(
1

m
‖B‖‖A‖3d5/2).

In summary, we conduct concentration bound over the observation samples and mini-batch

sizes, and show the gradient of f(A) that Algorithm 3 is optimizing over has close gradient and

Hessian with the population risk g(A). Therefore a second-order stationary point (SOSP) for f(A)

(that our algorithm is guaranteed to achieve) is also an ε approximated SOSP for g(A). Next we

show such a point also yield an ε approximated first-order stationary point of the reparametrized

function g̃(Z) ≡ g(A),∀Z = AA>.

4.6.3 Relation on Approximate Optimality

In this section, we establish the relationship between g̃ and g. We present the general form

of our target Problem 1:

min
A∈Rd×k

g(A) ≡ g̃(AA>) (4.4)
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s.t.Tr(A>XiA) = yi, Xi ∈ S, yi ∈ R, i = 1, · · · , n.

Similar to the previous section, the stationary property might not be obvious on the original problem.

Instead, we could look at the re-parametrized version as:

minZ∈S g̃(Z) (4.5)

s.t. Tr(XiZ) = yi, Xi ∈ S, yi ∈ R, i = 1, · · · , n,

Z � 0,

Definition 4.6.5. A matrix A ∈ R
d×k is called an ε-approximate second-order stationary point

(ε-SOSP) of Eqn. (4.4) if there exists a vector λ such that:
Tr(A>XiA) = yi, i ∈ [n]
‖(∇Z g̃(AA>)−

∑n
i=1 λiXi)ãj‖ ≤ ε‖ãj‖,

({ãj}j span the column space of A)
Tr(B>D∇AL(A, λ)[B]) ≥ −ε‖B‖2,

∀B s.t. Tr(B>XiA) = 0

Here L(A, λ) is the Lagrangian form g̃(AA>)−
∑n

i=1 λi(Tr(A>XiA)− yi).

Specifically, when ε = 0 the above definition is exactly the second-order KKT condition for

optimizing (4.4). Next we present the approximate first-order KKT condition for (4.5):

Definition 4.6.6. A symmetric matrix Z ∈ Sn is an ε-approximate first order stationary point of

function (4.5) (ε-FOSP) if and only if there exist a vector σ ∈ Rm and a symmetric matrix S ∈ S

such that the following holds:

Tr(XiZ) = yi, i ∈ [n]
Z � 0,
S � −εI,
‖Sãj‖ ≤ ε‖ãj‖,

({ãj}j span the column space of Z)
S = ∇Z g̃(Z)−

∑n
i=1 σiXi.
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Lemma 4.6.7. Let latent dimension k = d. For an ε-SOSP of function (4.4) with A and λ,

it infers an ε-FOSP of function (4.5) with Z, σ and S that satisfies: Z = AA>, σ = λ and

S = ∇Z g̃(AA>)−
∑

i λiXi.

Now it remains to show an ε-FOSP of g̃(Z) indeed yields a good approximation for the

ground truth parameter matrix.

Lemma 4.6.8. If Z is an ε-FOSP of function (4.5), then ‖Z − Z∗‖F ≤ O(ε). Here Z∗ = A∗(A∗)>

is the optimal solution for function (4.5).

Together with the previous arguments, we finally achieve our main theorem on connecting

the recovery guarantees with the sample complexity and batch size4:

Theorem 4.6.9. For arbitrary δ < 1, ε, given small enough learning rate η < 1/poly(d, 1/ε, log(1/δ)),

let sample size n ≥ Θ̃(d5/ε2 log2(1/δ)), batch sizem ≥ O(d5/ε), for large enough T=poly(1/η, 1/ε, d, log(1/δ)),

the output of Algorithm 3 satisfies

‖A(T )(A(T ))> − Z∗‖F ≤ O(ε),

with probability 1− δ, under Assumptions 4.5.1 & 4.6.1 and k = d.

Therefore we have shown that with finite samples of poly(d, 1/ε), we are able to learn the

generating distribution with error measured in the parameter space, using stochastic gradient descent

ascent. This echos the empirical success of training WGAN. Meanwhile, notice our error bound

matches the lower bound on dependence of 1/ε, as suggested in [166].
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Figure 4.1: Recovery error (‖AA> − Z∗‖F ) with different observed sample sizes n and output
dimension d.
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(a) leaky ReLU activation (α = 0.2) (b) tanh activation

Figure 4.2: Comparisons of different performance with leakyReLU and tanh activations. Same color
starts from the same starting point. For both cases, parameters always converge to true covariance
matrix. Each arrow indicates the progress of 500 iteration steps.

4.7 Experiments

In this section, we provide simple experimental results to validate the performance of

stochastic gradient descent ascent and provide experimental support for our theory.

4The exact error bound comes from the fact that when diagonal terms of AA> are fixed, ‖A‖2 = O(
√
d).
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We focus on Algorithm 3 that targets to recover the parameter matrix. We conduct a thorough

empirical studies on three joint factors that might affect the performance: the number of observed

samplesm (we set n = m as in general GAN training algorithms), the different choices of activation

function φ, and the output dimension d.

In Figure 4.1 we plot the relative error for parameter estimation decrease over the increasing

sample complexity. We fix the hidden dimension k = 2, and vary the output dimension over {3, 5, 7}

and sample complexity over {500, 1000, 2000, 5000, 10000}. Reported values are averaged from

20 runs and we show the standard deviation with the corresponding colored shadow. Clearly the

recovery error decreases with higher sample complexity and smaller output dimension. From the

experimental results, we can see that our algorithm always achieves global convergence to the

ground truth generators from any random initialization point.

To visually demonstrate the learning process, we also include a simple comparison for

different φ: i.e. leaky ReLU and tanh activations, when k = 1 and d = 2. We set the ground truth

covariance matrix to be [1, 1; 1, 1], and therefore a valid result should be [1, 1] or [−1,−1]. From

Figure 4.2 we could see that for both leaky ReLU and tanh, the stochastic gradient descent ascent

performs similarly with exact recovery of the ground truth parameters.

4.8 Conclusion

We analyze the convergence of stochastic gradient descent ascent for Wasserstein GAN

on learning a single layer generator network. We show that stochastic gradient descent ascent

algorithm attains the global min-max point, and provably recovers the parameters of the network

with ε absolute error measured in Frobenius norm, from Θ̃(d5/ε2) i.i.d samples.
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Appendix A

Appendix for Primal-Dual Generalized Block Frank-Wolfe
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A.1 Omitted Proofs for Primal Dual Generalized Block Frank-Wolfe
A.1.1 Notation and simple facts

Recall primal, dual and Lagrangian forms:

P (x)
4
= f ∗(Ax) + g(x)

L(x,y)
4
= g(x) + y>Ax− f(y)

D(y)
4
= min

x∈C
L(x,y) = L(x̄(y),y)

Similar to the definitions in [97], we introduce the primal gap defined as ∆
(t)
p
4
= L(x(t+1),y(t))−

D(y(t)), and dual gap ∆
(t)
d

4
= D∗ −D(y(t)). Recall the assumptions:

• f is 1/β-strongly convex and is 1/α-smooth on a convex set and infinity otherwise.

• R = maxi ‖ai‖2
2,∀i ∈ [n].

• g is µ-strongly convex and L-smooth.

For simplicity we first assume α ≥ 1
2
β and then generalize the result.

Claim A.1.1. • Since D(y) = minx∈C{g(x) + y>Ax} − f(y), −D(y) is 1
β

-strongly convex.

• Based on our update rule, ∃g ∈ ∂yf(y(t)), such that

y
(t)

I(t)
− y

(t−1)

I(t)
= δ(AI(t),:x

(t) − gI(t)). (A.1)

And our update rule ensures that I(t) consists of indices i ∈ [n] that maximizes |a>i x(t)− gi|.
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A.1.2 Primal Progress

Lemma A.1.2. (Primal Progress)

L(x(t+1),y(t))− L(x̄(t),y(t)) ≤ (1− η

2
)
(
L(x(t),y(t))− L(x̄(t),y(t))

)
Or equivalently,

(1− η

2
)(L(x(t+1),y(t))− L(x(t),y(t))) ≤ −η

2

(
L(x(t+1),y(t))− L(x̄(t),y(t))

)
≡ −η

2
∆(t)
p

Proof. Simply replace ht as L(x(t),y(t))−D(y(t)) and ht+1 as L(x(t+1),y(t))−D(y(t)) in Inequal-

ity (2.7). We could conclude that ht+1 ≤ (1−η+η2L
µ

)ht. Therefore when η ≤ µ
2L

, ht+1 ≤ (1− η
2
)ht

and the first part of Lemma A.1.2 is true. Some simple rearrangement suffices the second part of the

lemma.

A.1.3 Primal Dual Progress

In order to get a clue on how to analyze the dual progress, we first look at how the primal

and dual evolve through iterations.

For an index set I and a vector y ∈ Rn, denote yI =
∑

i∈I yiei ∈ Rk as the subarray of y indexed

by I , with |I| = k. Recall Algorithm 1 selects the coordinates to update in the dual variable as I(t).

Lemma A.1.3. (Primal-Dual Progress).

∆
(t)
d −∆

(t−1)
d + ∆(t)

p −∆(t−1)
p

≤ L(x(t+1),y(t))− L(x(t),y(t))− 1

2δ
‖y(t) − y(t−1)‖2

+2δRk‖x̄(t) − x(t)‖2.
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Proof. Notice we have claimed that −D(y) is 1
β

-strongly convex and for all g ∈ ∂yf(y(t)),

∆
(t)
d −∆

(t−1)
d =

(
−D(y(t))

)
−
(
−D(y(t−1))

)
≤ 〈−∇yL(x̄(t),y(t)),y(t) − y(t−1)〉 − 1

2β
‖y(t) − y(t−1)‖2

= −〈AI(t),:x̄(t) − gI(t) ,y
(t)

I(t)
− y

(t−1)

I(t)
〉 − 1

2β
‖y(t) − y(t−1)‖2 (A.2)

Meanwhile since −L(x,y) is 1
α

-smooth over its feasible set,

L(x(t),y(t))− L(x(t),y(t−1))

= −L(x(t),y(t−1))− (−L(x(t),y(t)))

≤ (AI(t),:x
(t) − gI(t))

>(y
(t)

I(t)
− y

(t−1)

I(t)
) +

1

2α
‖y(t−1)

I(t)
− y

(t)

I(t)
‖2

= (
1

δ
+

1

2α
)‖y(t) − y(t−1)‖2. (A.3)

Also, with the update rule of dual variables, we could make use of Eqn. (A.1) and re-write

Eqn. (A.2) as:

∆
(t)
d −∆

(t−1)
d

≤ −〈AI(t),:x̄(t) − gI(t) ,y
(t)

I(t)
− y

(t−1)

I(t)
〉 − 1

δ
‖y(t) − y(t−1)‖2

+(y(t) − y(t−1))>(AI(t),:x
(t) − gI(t))−

1

2β
‖y(t) − y(t−1)‖2

= −〈AI(t),:(x̄(t) − x(t)),y
(t)

I(t)
− y

(t−1)

I(t)
〉 − (

1

δ
+

1

2β
)‖y(t) − y(t−1)‖2 (A.4)

Together we get:

∆
(t)
d −∆

(t−1)
d + ∆(t)

p −∆(t−1)
p

=L(x(t+1),y(t))− L(x(t),y(t)) + L(x(t),y(t))− L(x(t),y(t−1))
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+ 2(∆
(t)
d −∆

(t−1)
d )

≤L(x(t+1),y(t))− L(x(t),y(t)) + (
1

δ
+

1

2α
)‖y(t−1)

I(t)
− y

(t)

I(t)
‖2 + 2(∆

(t)
d −∆

(t−1)
d )

(from Eqn. (A.3))

≤L(x(t+1),y(t))− L(x(t),y(t)) + (
1

δ
+

1

2α
)‖y(t−1)

I(t)
− y

(t)

I(t)
‖2

− 2〈AI(t),:(x̄(t) − x(t)),y
(t)

I(t)
− y

(t−1)

I(t)
〉 − 2(

1

δ
+

1

2β
)‖y(t) − y(t−1)‖2

(from Eqn. (A.4))

=L(x(t+1),y(t))− L(x(t),y(t))− 2〈AI(t),:(x̄(t) − x(t)),y
(t)

I(t)
− y

(t−1)

I(t)
〉

− (
1

δ
+

1

β
− 1

2α
)‖y(t) − y(t−1)‖2

≤L(x(t+1),y(t))− L(x(t),y(t)) + 2δ‖AI(t),:(x̄(t) − x(t))‖2

− (
1

δ
− 1

2δ
)‖y(t) − y(t−1)‖2 (since 2ab ≤ γa2 + 1/γb2)

≤L(x(t+1),y(t))− L(x(t),y(t))− 1

2δ
‖y(t) − y(t−1)‖2

+ 2δRk‖x̄(t) − x(t)‖2

Therefore we will connect the progress induced by −‖y(t) − y(t−1)‖ and dual gap ∆
(t)
d next.

A.1.4 Dual progress

Claim A.1.4. An α-strongly convex function f satisfies:

f(x)− f ∗ ≤ 1

2α
‖∇f(x)‖2

2

This simply due to f(x)− f ∗ ≤ 〈∇f(x),x− x̄〉 − α
2
‖x− x̄‖2

2 ≤ 1
2α
‖∇f(x)‖2 + α

2
‖x−

x̄‖2 − α
2
‖x− x̄‖2 = 1

2α
‖∇f(x)‖2.
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Since −D is 1
β

-strongly convex, we get

∆
(t)
d = D∗ −D(y(t)) ≤β

2
‖∇D(y(t))‖2

2

=
β

2
‖Ax̄(t) − g‖2

2

≤nβ
2k
‖AĪ,:x̄(t) − gĪ‖2

2, (A.5)

where Ī is a set of size k that maximizes the values of A>i x̄
(t) − gi.

Lemma A.1.5 (Dual Progress).

−‖y(t) − y(t−1)‖2 ≤ −kδ
β

∆
(t)
d + kδR‖x̄(t) − x(t)‖2

2

Proof of Lemma A.1.5. Define ∆ = A(x̄(t) − x(t)). Since

− ‖A>I(t)x
(t) − gI(t)‖2

≤− ‖A>Ī x
(t) − gĪ‖2 (choice of I(t))

=− ‖A>Ī x̄
(t) − gĪ −∆Ī‖2

≤− 1

2
‖A>Ī x̄

(t) − gĪ‖2 + ‖∆Ī‖2
2

(since −(a+ b)2 ≤ −1/2a2 + b2)

≤− k

β
∆

(t)
d + ‖∆Ī‖2

2 (from (A.5) )

≤− k

β
∆

(t)
d +

k

n2
R‖x̄(t) − x(t)‖2

2

With the relation between A>
I(t)

x(t) − gI(t) and y(t) − y(t−1) we finish the proof.

A.1.5 Convergence on Duality Gap

Now we are able to merge the primal/dual progress to get the overall progress on the duality

gap.
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Proof of Theorem 2.5.1. We simply blend Lemma A.1.2 and Lemma A.1.5 with the primal-dual

progress (Lemma A.1.3):

∆
(t)
d −∆

(t−1)
d + ∆(t)

p −∆(t−1)
p

≤L(x(t+1),y(t))− L(x(t),y(t))− 1

2δ
‖y(t) − y(t−1)‖2

+ 2δRk‖x̄(t) − x(t)‖2 (Lemma A.1.3)

≤L(x(t+1),y(t))− L(x(t),y(t)) +
δ

2
(−k
β

∆
(t)
d + kR‖x̄(t) − x(t)‖2

2)

+ 2δRk‖x̄(t) − x(t)‖2 (Lemma A.1.5)

=L(x(t+1),y(t))− L(x(t),y(t))− kδ

2β
∆

(t)
d +

5Rδk

2
‖x̄(t) − x(t)‖2

2

≤L(x(t+1),y(t))− L(x(t),y(t))− kδ

2β
∆

(t)
d +

5Rδk

µ
(L(x(t),y(t))− L(x̄(t),y(t)))

=(1− 5Rδk

µ
)(L(x(t+1),y(t))− L(x(t),y(t)))− kδ

2β
∆

(t)
d

+
5Rδk

µn2
(L(x(t+1),y(t))− L(x̄(t),y(t)))

≤− kδ

2β
∆

(t)
d −

(
(1− 5Rδk

µn2
)
µ

4L
− 5Rδk

µ

)
∆(t)
p (Lemma A.1.2)

When setting kδ
2β

= (1− 5Rδk
µn2 ) µ

4L
− 5Rδk

µ
, we get that ∆(t) ≤ 1

1+a
∆(t−1), where 1/a = O(L

µ
(1+ Rβ

µ
)).

Therefore it takes O(L
µ

(1 + Rβ
µ

) log 1
ε
) for ∆(t) to reach ε.

When β > 2α, we could redefine the primal-dual process as ∆(t) := (β
α
− 1)∆

(t)
d + ∆

(t)
p and

rewrite some of the key steps, especially for the overall primal-dual progress.

∆(t) −∆(t−1)

=(
β

α
− 1)(∆

(t)
d −∆

(t−1)
d ) + ∆(t)

p −∆(t−1)
p
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=L(x(t+1),y(t))− L(x(t),y(t)) + L(x(t),y(t))− L(x(t),y(t−1))

+
β

α
(∆

(t)
d −∆

(t−1)
d )

≤L(x(t+1),y(t))− L(x(t),y(t)) + (
1

δ
+

1

2α
)‖y(t−1)

I(t)
− y

(t)

I(t)
‖2

− β

α
〈AI(t),:(x̄(t) − x(t)),y

(t)

I(t)
− y

(t−1)

I(t)
〉 − β

α
(
1

δ
+

1

2β
)‖y(t) − y(t−1)‖2

(from Eqn. (A.3) and (A.4))

=L(x(t+1),y(t))− L(x(t),y(t))− β

α
〈AI(t),:(x̄(t) − x(t)),y

(t)

I(t)
− y

(t−1)

I(t)
〉

− (
β

α
− 1)

1

δ
‖y(t) − y(t−1)‖2

≤L(x(t+1),y(t))− L(x(t),y(t)) +
3β

2α
δ‖AI(t),:(x̄(t) − x(t))‖2

− (
3β

4α
− 1)

1

δ
‖y(t) − y(t−1)‖2 (since ab ≤ δa2 + 1/(4δ)b2)

≤L(x(t+1),y(t))− L(x(t),y(t)) +
β

α
δ‖AI(t),:(x̄(t) − x(t))‖2

− β

4αδ
‖y(t) − y(t−1)‖2 (since β/α ≥ 2)

≤L(x(t+1),y(t))− L(x(t),y(t))− β

4αδ
‖y(t) − y(t−1)‖2

+
βδRk

α
‖x̄(t) − x(t)‖2

Similarly to the previous setting, we get the whole primal-dual progress is bounded as follows:

(
β

α
− 1)(∆

(t)
d −∆

(t−1)
d ) + ∆(t)

p −∆(t−1)
p

≤L(x(t+1),y(t))− L(x(t),y(t))− βδ

4α

k

β
∆

(t)
d

+
5βRδk

2αµ
(L(x(t),y(t))− L(x̄(t),y(t)))

≤− β

4α

kδ

β
∆

(t)
d −

(
(1− 5βRδk

2αµ
)
µ

4L
− 5βRδk

2αµ

)
∆(t)
p

Therefore, when we set a proper k and δ such that β
4α

kδ
β

= (β
α
− 1)

(
(1− 5βRδk

2αµ
) µ

4L
− 5βRδk

2αµ

)
, and
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since β
α
− 1 ≥ β

2α
, we get δ = 1

k
( L
µβ

+ 5βR
2αµ

(1 + 4L
µ

))−1. And we have ∆(t) −∆(t−1) ≤ −1/a∆(t),

where a = O(L
µ

(1 + β
α
Rβ
µ

)). Therefore it takes t = O(L
µ

(1 + β
α
Rβ
µ

) log 1
ε
) iterations for the duality

gap ∆(t) to reach ε error.

A.1.6 Smooth Hinge Loss and Relevant Properties

Smooth hinge loss is defined as follows:

h(z) =


1
2
− z if z < 0

1
2
(1− z)2 if z ∈ [0, 1]

0 otherwise.
(A.6)

Our loss function over a prediction p associated with a label `i ∈ {±1} will be fi(p) = h(p`i). The

derivative of smooth hinge loss h is:

h′(z) =


−1 if z < 0
z − 1 if z ∈ [0, 1]
0 otherwise.

(A.7)

Its convex conjugate is:

h∗(z∗) =

{
1
2
(z∗)2 + z∗ if z∗ ∈ [−1, 0]
∞ otherwise. (A.8)

Notice since fi(p) = h(`ip), f ∗i (p) = h∗(p/`i) = h∗(p`i).

Claim A.1.6. For a convex and β-smooth scalar function f , if it is α strongly convex over some

convex set, and linear otherwise, then its conjugate function f ∗ is 1/β-strongly convex, and it is a

1/α-smooth function plus an indicator function over some interval [a, b].

Proof. To begin with, since f ′′(x) ≤ β, ∀x, meaning f is β-smooth, then with duality we have f ∗

is 1/β strongly convex [76]. Secondly, since f is α strongly convex over a convex set, meaning

an interval for R, therefore f could only be linear on (−∞, a] or [b,∞), and is α-strongly convex
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over the set [a, b] (Here for simplicity a < b could be ±∞). We denote f ′(−∞) := limx→−∞ f
′(x)

and f ′(−∞) likewise. It’s easy to notice that f ′(−∞) ≤ f ′(a) < f ′(b) ≤ f ′(∞) since f is convex

overall and strongly convex over [a, b]. Therefore f(y) > f(a) + f ′(a)(y − a) when y > a and

f(y) = f(a) + f ′(a)(y − a) when y ≤ a.

Now since f ∗(x∗) ≡ maxx{x∗x− f(x)}, it’s easy to verify that when x∗ < f ′(a), x∗x−

f(x) = x∗x − f(a) − f ′(a)(x − a) = −(f ′(a) − x∗)x − f(a) + f ′(a)a → ∞ when x → −∞.

Similarly, when x∗ > f ′(b), f ∗(x∗) =∞. On the other hand, when x∗ ∈ [f ′(a), f ′(b)], f ∗(x∗) =

maxx{x∗x − f(x)} = maxx∈[a,b]{x∗x − f(x)}. This is because x∗a − f(a) ≥ x∗y − f(y) =

x∗y − f(y)− f ′(a)(y − a),∀y ≤ a, and similarly x∗b− f(b) ≥ x∗y − f(y)∀y > b. Therefore f ∗

is 1/α smooth over the interval [f ′(a), f ′(b)], where −∞ ≤ f ′(a) < f ′(b) ≤ ∞.

A.1.7 Convergence of Optimization over Trace Norm Ball

The convergence analysis for trace norm ball is mostly similar to the case of `1 ball. The

most difference lies on the primal part, where our approximated update incur linear progress as well

as some error.

Lemma A.1.7 (Primal Progress for Algorithm 2). Suppose rank X̄(t) ≤ s and ε > 0. If each X̃

computed in our algorithm is a (1
2
, ε

8
)-approximate solution to (2.15), then for every t, it satisfies

L(X(t+1), Y (t))− L(X(t), Y (t)) ≤ − µ
8L

∆
(t)
p + ε

16
.

Proof. Refer to the proof in [5] we have:

L(X(t+1), Y (t))− L(X̄(t), Y (t)) ≤ (1− µ

8L
)
(
L(X(t), Y (t)))− L(X̄(t), Y (t))

)
+

εµ

16L
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Now move the first term on the RHS to the left and rearrange we get:

(1− µ

8L
)(L(X(t+1), Y (t))− L(X(t), Y (t))) +

µ

8L

(
L(X(t+1), Y (t)))− L(X̄(t), Y (t))

)
≤ εµ

16L

Therefore we get:

L(X(t+1), Y (t))− L(X(t), Y (t))) ≤ − µ

8L
∆(t)
p +

ε

16
.

Now back to the convergence guarantees on the trace norm ball.

Proof of Theorem 2.5.4. We again define ∆ = A(X̄(t) − X(t)). G = ∇YL(X(t), Y (t)) such that

Y
(t)

I(t),:
− Y (t−1)

I(t),:
= δ(〈AI(t),:X(t)〉 −GI(t),:). Again we get ‖∆‖2

F ≤ R‖X̄(t) −X(t)‖2
F .

∆
(t)
d ≤

β

2
‖AX̄(t) −G‖2

F ≤
nβ

2k
‖AI(t),:X̄(t) −GI(t),:‖2

F

Other parts are exactly the same and we get:

(
β

α
− 1)(∆

(t)
d −∆

(t−1)
d ) + ∆(t)

p −∆(t−1)
p

≤L(X(t+1), Y (t))− L(X(t), Y (t))− βδ

4α

k

β
∆

(t)
d

+
5βRδk

2αµ
(L(X(t), Y (t))− L(X̄(t), Y (t)))

≤− β

4α

kδ

β
∆

(t)
d −

(
(1− 5βRδk

2αµ
)
µ

8L
− 5βRδk

2αµ

)
∆(t)
p + (1− 5βRδk

2αµ
)
ε

16

(Lemma A.1.7)

Therefore when δ ≤ 1
k
( L
µβ

+ 5βR
2αµ

(1 + 8L
µ

))−1, it satisfies ∆(t) − ∆(t−1) ≤ − kδ
2β

∆(t) + ε
16
. There-

fore denote a = 2β
kδ

, we get ∆(t) ≤ a
a+1

(∆(t−1) + ε
16

). Therefore we get ∆(t) ≤ ( a
a+1

)t∆(0) +

83



ε
16

∑t
i=1( a

a+1
)i ≤ ( c

c+1
)t∆(0)+ε/16. Since ( a

a+1
)t ≤ e−t/a, it takes around a = O(L

µ
(1+ β

α
Rβ
µ

) log 1
ε
)

iterations for the duality gap to get ε-error.

A.1.8 Difficulty on Extension to Polytope Constraints

Another important type of constraint we have not explored in this paper is the polytope

constraint. Specifically,

min
x∈M⊂Rd

f(Ax) + g(x),M = conv(A),with only access to: LMOA(r) ∈ arg min
x∈A

〈r,x〉,

where A ⊂ R
d, |A| = m is a finite set of vectors that is usually referred as atoms. It is worth

noticing that this linear minimization oracle (LMO) for FW step naturally chooses a single vector

in A that minimizes the inner product with x. Again, this FW step creates some "partial update"

that could be appreciated in many machine learning applications. Specifically, if our computation

of gradient is again dominated by a matrix-vector (data matrix versus variable x) inner product,

we could possibly pre-compute each value of vi := Axi,xi ∈ A, and simply use vi to update the

gradient information when xi is the greedy direction provided by LMO.

When connecting to our sparse update case, we are now looking for a k-sparse update,

k � m = |A|, with the basis of A, i.e., x̃ =
∑k

i=1 λixni ,xni ∈ A. In this way, when we update

x+ ← (1− η)x + ηx̃, we will only need to compute
∑k

i=1 vni which is O(kd) time complexity.

However, to enforce such update that is "sparse" on A is much harder. To migrate our

algorithms with `1 ball or trace norm ball, we will essentially be solving the following problem:

x̃← arg min
Λ∈∆m,‖Λ‖0≤k,x=

∑m
i=1 λixi,xi∈A

〈g,y〉+
1

2η
‖y − x‖2

2,

where ∆m is the m dimensional simplex, and g is the current gradient vector.
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Unlike the original sparse recovery problem that could be relaxed with an `1 constraint to

softly encourage sparsity, it’s generally much harder to find the k sparse Λ in this case. Actually, it

is as hard as the lattice problem [82] and is NP hard in general.

Therefore we are not able to achieve linear convergence with cheap update with polytope-

type constraints. Nonetheless, the naive FW with primal dual formulation should still be computa-

tional efficient in terms of per iteration cost, where a concentration on SVM on its dual form has

been explored by [86].
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A.2 Discussions on Efficient Coordinate Selections

The modified Block Frank-Wolfe step in Eqn. (2.6) achieves an s-sparse update of the

iterates and could be computed efficiently when one knows which s coordinates to update. However,

in order to find the s coordinates, one needs to compute the full gradient ∇f(x) with naive

implementation. This phenomenon reminds us of greedy coordinate descent.

Even with the known fact that coordinate descent converges faster with greedy selection

than with random order[129], there have been hardness to propogate this idea because of expensive

greedy selections since the arguments that GCD converges similarly with RCD in [124], except for

special cases [99, 97, 44, 77]. This is also probability why the partial updates nature of FW steps is

less exploited before.

We investigate some possible tricks to boost GCD method that could be possibly applied

to FW methods. A recent paper [77], Karimireddy et al. make connections between the efficient

choice of the greedy coordinates with the problem of Maximum Inner Product Search (MIPS) for a

composite function P (x) = f(Ax) + g(x), where A ∈ Rn×d. We rephrase the connection for the

Frank-Wolfe algorithm. Since the computation of gradient is essentially A>∇f|Ax +∇g(x), to find

its largest magnitude is to search maximum inner products among:

±〈[ã>i |1], [∇f>|Ax|∇ig(x)]〉, i.e.±
(
ã>i ∇f|Ax +∇ig(x)

)
,

where ãi ∈ Rn is the i-th column of data matrix A, and ∇f|Ax is the gradient of f at Ax. In this

way, we are able to select the greedy coordinates by conducting MIPS for a fixed R2d×(n+1) matrix

[A>|I| − A>| − I]> and each newly generated vector [∇f>|Ax|∇gi(x)]. Therefore when ∇gi is

constant for linear function or ±λ for g(x) = λ‖x‖1, we could find the largest magnitude of the

gradient in sublinear time. Still, the problems it could conquer is very limited. It doesn’t even work
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for `2 regularizer since the different coordinates in∇ig(x) creates d new vectors in each iteration

and traditional MIPS could resolve it in time sublinear to d. Meanwhile, even with constant∇ig(x),

it still requires at least O((2d)c log(d)) times of inner products of dimension n+1 for some constant

c [147].

However, we have shown that for general composite form f(Ax) + g(x) with much more

relaxed requirements on the regularizer g, we are able to select and update each coordinate with

constant times of inner products on average while achieving linear convergence. Therefore the

usage of these tricks applied on FW method (MIPS as well as the nearest neighbor search [44]) is

completely dominated by our contribution and we omit them in the main text of this paper.

A.3 More Results on Empirical Studies
A.3.1 More experiments with `1 norm

To investigate more on how our algorithms perform with different choices of parameters,

we conducted more empirical studies with different settings of condition numbers. Specifically, we

vary the parameter µ that controls the strong convexity of the primal function. Experiments are

shown in Figure A.1.

A.3.2 Experiments with trace norm ball on synthetic data

For trace norm constraints, we also implemented our proposal Primal Dual Block Frank

Wolfe to compare with some prior work, especially Block FW [5]. Since prior work were mostly

implemented in Matlab to tackle trace norm projections, we therefore also use Matlab to show fair

comparisons. We choose quadratic loss f(AX) = ‖AX − B‖2
F and g to be `2 regularizer with

µ = 10/n. The synthetic sensing matrix A ∈ R
n×d is dense with n = 1000 and d = 800. Our
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Figure A.1: Convergence result comparison of different algorithms on smoothed hinge loss by
varying the coefficient of the regularizer. The first row is the results ran on the rcv1.binary dataset,
while the second row is the results ran on the news20.binary dataset. The first column is the result
when the regularizer coeffcient µ is set to 1/n. The middle column is when µ = 10/n, and the right
column is when µ = 100/n.

observation B is of dimension 1000× 600 and is generated by a ground truth matrix X0 such that

B = AX0. Here X0 ∈ R800×600 is constructed with low rank structure. We vary its rank s to be

10, 20, and 100. The comparisons with stochastic FW, blockFW [5], STORC [66], SCGS [87],

and projected SVRG [74] are presented in Figure A.2, which verifies that our proposal PDBFW

consistently outperforms the baseline algorithms.
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Figure A.2: Convergence comparison of our Primal Dual Block Frank Wolfe and other baselines.
Figures show the relative primal objective value decreases with the wall time.
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Appendix B

Appendix for Optimistic Multiplicative Weight Update

B.1 Equations of the Jacobian of OMWU

∂g1,i

∂xi
=
e
−2η ∂f

∂xi
+η ∂f

∂zi

Sx
+ xi

1

S2
x

(
e
−2η ∂f

∂xi
+η ∂f

∂zi (−2η
∂2f

∂x2
i

)Sx − e−2η ∂f
∂xi

+η ∂f
∂zi
∂Sx
∂xi

)
(B.1)

where
∂Sx
∂xi

= e
−2η ∂f

∂xi
+η ∂f

∂zi − 2η
∑
k

xke
−2η ∂f

∂xk
+η ∂f

∂zk
∂2f

∂x2
i

(B.2)

∂g1,i

∂xj
= xi

1

S2
x

(
e
−2η ∂f

∂xi
+η ∂f

∂zi (−2η
∂2f

∂xi∂xj
)Sx − e−2η ∂f

∂xi
+η ∂f

∂zi
∂Sx
∂xj

)
(B.3)

where
∂Sx
∂xj

= e
−2η ∂f

∂xj
+η ∂f

∂zj − 2η
∑
k

xke
−2η ∂f

∂xk
+η ∂f

∂zk
∂2f

∂xj∂xk
(B.4)

∂g1,i

∂yj
= xi

1

S2
x

(
e
−2η ∂f
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+η ∂f
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∂zi
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where
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∂g1,i

∂wj
= xi

1

S2
x

(
e
−2η ∂f

∂xi
+η ∂f

∂zi η
∂2f

∂zi∂wj
Sx − e−2η ∂f

∂xi
+η ∂f

∂zi
∂Sx
∂wj

)
(B.9)

where
∂Sx
∂wj

=
∑
k

xke
−2η ∂f

∂xk
+η ∂f

∂zk η
∂f

∂zk∂wj
(B.10)

90



∂g2,i

∂xj
= yi

1
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B.2 Equations of the Jacobian of OMWU at the fixed point (~x∗, ~y∗, ~z∗, ~w∗)

In this section, we compute the equations of the Jacobian at the fixed point (~x∗, ~y∗, ~z∗, ~w∗).

The fact that (~x∗, ~y∗) = (~z∗, ~w∗) and (~z, ~w) takes the position of (~x, ~y) in computing partial

derivatives gives the following equations.

∂g1,i

∂xi
= 1− x∗i − 2ηx∗i (

∂2f

∂x∗i
−
∑
k

x∗k
∂2f

∂xi∂xk
), i ∈ [n], (B.19)

∂g1,i

∂xj
= −x∗i − 2ηx∗i (

∂2f

∂xi∂xj
−
∑
k

x∗k
∂2f

∂xj∂xk
), j ∈ [n], j 6= i (B.20)
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∂2f
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∂g1,i
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= ηx∗i (

∂2f

∂xi∂yj
−
∑
k

x∗k
∂2f
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−
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k
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∂2f
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∂yi
= 1− y∗i + 2η(
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i

−
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k
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∂2f
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∑
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y∗k
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∂yk∂yj
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∂g3,i

∂xi
= 1 for all i ∈ [n] and zerofor all the other partial derivatives of g3,i (B.29)

∂g4,i

∂yi
= 1 for all i ∈ [m] and zero for all the other partial derivatives of g4,i. (B.30)
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B.3 Jacobian matrix at (~x∗, ~y∗, ~z∗, ~w∗)

This section serves for the "Spectral Analysis" of Section 3. The Jacobian matrix of g at the
fixed point is obtained based on the calculations above. We refer the main article for the subscript
indicating the size of each block matrix.

J =


~I −D~x∗~1~1> − 2ηD~x∗ (~I −~1~x∗>)∇2

~x~xf −2ηD~x∗ (~I −~1~x∗>)∇2
~x~yf ηD~x∗ (~I −~1~x∗>)∇2

~x~xf ηD~x∗ (~I −~1~x∗>)∇2
~x~yf

2ηD~y∗> (~I −~1~y∗)∇2
~y~xf

~I −D~y∗~1~1> + 2ηD~y∗ (~I −~1~y∗>)∇2
~y~yf −ηD~y∗ (~I −~1~y∗>)∇2

~y~xf −ηD~y∗ (~I −~1~y∗>)∇2
~y~yf

~I ~0 ~0 ~0
~0 ~I ~0 ~0



By acting on the tangent space of each simplex, we observe that D~x∗
~1~1>~v = 0 for

∑
k vk =

0, so each eigenvalue of matrix J is an eigenvalue of the following matrix

Jnew =


~I − 2ηD~x∗ (~I −~1~x∗>)∇2

~x~xf −2ηD~x∗ (~I −~1~x∗>)∇2
~x~yf ηD~x∗ (~I −~1~x∗>)∇2

~x~xf ηD~x∗ (~I −~1~x∗>)∇2
~x~yf

2ηD~y∗ (~I −~1~y∗>)∇2
~y~xf

~I + 2ηD~y∗ (~I −~1~y∗>)∇2
~y~yf −ηD~y∗ (~I −~1~y∗>)∇2

~y~xf −ηD~y∗ (~I −~1~y∗>)∇2
~y~yf

~I ~0 ~0 ~0
~0 ~I ~0 ~0


The characteristic polynomial of Jnew is det(Jnew − λI) that can be computed as the determinant of
the following matrix:[

(1− λ)~I + ( 1
λ
− 2)ηD~x∗(~I −~1~x∗>)∇2

~x~xf ( 1
λ
− 2)ηD~x∗(~I −~1~x∗>)∇2

~x~yf

(2− 1
λ
)ηD~y∗(~I −~1~y∗>)∇2

~y~xf (1− λ)~I + (2− 1
λ
)ηD~y∗(~I −~1~y∗>)∇2

~y~yf

]
(B.31)
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Appendix C

Appendix for Learning One-layer Generative Model
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C.1 Omitted Proof for Hardness

Proof of Theorem 4.3.1. We consider the problem:

f(x,y) = φ(−Ax + 21)>y1 + (φ(1>x) + φ(−1>x)− n)y2 + φ(x− 1)>y3 + φ(−x− 1)>y4.

It could be easily verified that f falls into the problem set we consider with proper stacking of

y1,y3,y4 and scalar y2. We write it in this form for the ease for interpretation and reduction proof.

First, notice if there exists a stationary point x∗,y∗, ∇yf(x∗,y∗) = 0. Therefore each term on x

should be 0. One on hand, the last two terms φ(−x∗ − 1) = 0 and φ(x∗ − 1) = 0 makes sure

that x∗i ∈ [−1, 1]. Then the second term that guarantees
∑

i |x∗i | = n means x∗i could only take

binary values. Finally notice any 3SAT problem could be written as a matrix A ∈ R
m×d where

each row is 3-sparse and binary, and ai dot product with a binary vector could only take the value

of −3,−1, 1, 3. And if the value is greater or equal to −2, it means the corresponding clause is

satisfied. In fact, we note that φ(−Ax∗+ 21) = 0 means that Ax∗ ≥ −2 meaning each conjunction

is satisfied. Therefore checking if there exists a stationary point is equivalent to answer the question

whether 3SAT is satisfiable.

C.2 Omitted Proof for Learning the Distribution
C.2.1 Stationary Point for Matching First Moment

Proof of Lemma 4.4.1. To start with, we consider odd-plus-constant monotone increasing activa-

tions. Notice that by proposing a rectified linear discriminator, we have essentially modified the

activation function as φ̃ := R(φ− C), where C = 1
2
(φ(x) + φ(−x)) is the constant bias term of φ.
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Observe that we can rewrite the objective f̄1 for this case as follows:

f1(A,v) = Ez∼N(0,Ik0×k0 ) v
>φ̃(A∗z)− Ez∼N(0,Ik×k) v

>φ̃(Az).

Moreover, notice that φ̃ is positive and increasing on its support which is [0,+∞).

Now let us consider the other case in our statement where φ has a positive and monotone

increasing even component in [0,+∞). In this case, let us take:

φ̃(x) =

{
φ(x) + φ(−x), x ≥ 0

0, o.w.

Because of the symmetry of the Gaussian distribution, we can rewrite the objective function for this

case as follows:

f1(A,v) = Ez∼N(0,Ik0×k0 ) v
>φ̃(A∗z)− Ez∼N(0,Ik×k) v

>φ̃(Az).

Moreover, notice that φ̃ is positive and increasing on its support which is [0,+∞).

To conclude, in both cases, the optimization objective can be written as follows, where φ̃

satisfies Assumption 4.4.1.2 and is only non-zero on [0,+∞).

f1(A,v) = Ez∼N(0,Ik0×k0 ) v
>φ̃(A∗z)− Ez∼N(0,Ik×k) v

>φ̃(Az).

The stationary points of the above objective satisfy:{
∇vf1(A,v) = Ez∼N(0,Ik0×k0 ) φ̃(A∗z)− Ez∼N(0,Ik×k) φ̃(Az) = 0,

∇ajf1(A,v) = −Ez∼N(0,Ik×k) vjφ̃
′(a>j z)z = 0.

We focus on the gradient over v. To achieve∇vf1(A,v) = 0, the stationary point satisfies:

∀j,Ez∼N(0,Ik0×k0 ) φ̃((a∗j)
>z) = Ez∼N(0,Ik×k) φ̃(a>j z), i.e.
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∀j,Ex∼N(0,‖a∗j‖2) φ̃(x) = Ex′∼N(0,‖aj‖2) φ̃(x′). (C.1)

To recap, for activations φ that follow Assumption 4.4.1, in both cases we have written the

necessary condition on stationary point to be Eqn. (C.1), where φ̃ is defined differently for odd or

non-odd activations, but in both cases it is positive and monotone increasing on its support [0,∞).

We then argue the only solution for Eqn. (C.1) satisfies ‖aj‖ = ‖a∗j‖,∀j. This follows directly

from the following claim:

Claim C.2.1. The function h(α) := Ex∼N(0,α2) f(x), α > 0 is a monotone increasing function if f

is positive and monotone increasing on its support [0,∞).

We could see from Claim C.2.1 that the LHS and RHS of Eqn. (C.1) is simply h(‖aj‖)

and h(‖a∗j‖) for each j. Now that h is an monotone increasing function, the unique solution for

h(‖aj‖) = h(‖a∗j‖) is to match the norm: ‖aj‖ = ‖a∗j‖, ∀j.

Proof of Claim C.2.1.

h(α) = Ex∼N(0,α2) f(x)

=

∫ ∞
0

f(x)e−
x2

2α2 dx

y:=x/α
=

∫ ∞
0

αf(αy)e−
y2

2 dy

= Ey∼N(0,1) αf(αy).

Notice h′(α) = Ex∼N(0,1)[αxf
′(αx) + f(αx)]. Since f , f ′, and α > 0, and we only care about

the support of f where x is also positive, therefore h′ is always positive and h is monotone

increasing.
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To sum up, at stationary point where∇f1(A,v) = 0, we have

∀i, ‖a∗i ‖ = ‖ai‖.

C.2.2 Proof of Theorem 4.4.2

Proof of Theorem 4.4.2. We will take optimal gradient ascent steps with learning rate 1 on the

discriminator side v, hence the function we will actually be optimizing over becomes (using the

notation for φ̃ from section C.2.1):

h(A) = max
v

f1(A,v) =
1

2

∥∥∥Ez∼N(0,Ik0×k0 ) φ̃(A∗z)− Ez∼N(0,Ik×k) φ̃(Az)
∥∥∥2

.

We just want to verify that there’s no spurious local minimum for h(A). Notice there’s no interaction

between each row vector of A. Therefore we instead look at each

hi :=
1

2

(
Ez∼N(0,Ik0×k0 ) φ̃((a∗i )

>z)− Ez∼N(0,Ik×k) φ̃(a>i z)
)2

for individual i. Now∇hi(ai) = −
(
Ez∼N(0,Ik0×k0 ) φ̃((a∗i )

>z)− Ez∼N(0,Ik×k) φ̃(a>i z)
)

(Ez∼N(0,Ik×k) zφ̃
′(a>i z)).

Due to the symmetry of the Gaussian, we take ai = ae1, where a = ‖ai‖. It is easy to see that check-

ing whether Ez∼N(0,Ik×k) zφ̃
′(a>i z) = 0 is equivalent to checking whether Ez1∼N(0,1) z1φ̃

′(az1) = 0.

Recall that φ̃ is supported on [0,+∞) and it is monotonically increasing on its support.

Hence, Ez1∼N(0,1) z1φ̃
′(az1) 6= 0 unless a = 0. Hence, suppose ‖ai‖ 6= 0, ∀i. Then∇Ah(A) = 0 iff

h(A) = 0, i.e. Ez∼N(0,Ik0×k0 ) φ̃(A∗z) = Ez∼N(0,Ik×k) φ̃(Az).

Therefore all stationary points of h(A) are global minima where Ez∼N(0,Ik0×k0 ) φ̃(A∗z) =

Ez∼N(0,Ik×k) φ̃(Az) and according to Lemma 4.4.1, this only happens when ‖ai‖ = ‖a∗i ‖,∀i ∈

[d].
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C.2.3 Stationary Points for WGAN with Quadratic Discriminator

Proof of Lemma 4.5.2. To study the stationary point for g̃(Z) =
∑

jk g̃jk(zjk), we look at each

individual g̃jk(z) ≡ 1
2
(
∑∞

i=0 σ
2
i ((z

∗
jk)

i − zi))2.

Notice for odd-plus-constant activations, σi is zero for even i > 0. Recall our assumption

in Lemma 4.5.2 also requires that σ1 6= 0. Since the analysis is invariant to the which entry

of matrix Z we are studying, we simplify the notation here and study the stationary points of

f(a) = 1
2
(
∑

i odd σ
2
i (a

i − bi))2 for some constants b and σi, where σ1 6= 0.1

f ′(a) =

(∑
i odd

σ2
i (a

i − bi)

)(∑
i odd

iσ2
i a

i−1

)

= (a− b)

(
σ2

1 +
∑
i≥3 odd

σ2
i

ai − bi

a− b

)(
σ2

1 +
∑
i≥3 odd

iσ2
i a

i−1

)
= (a− b)(I)(II).

Notice now f ′(a) = 0 ⇔ a = b. This is because the polynomial f ′(a) is factorized to a − b and

two factors I and II that are always positive. Notice here we use ai−bi
a−b to denote

∑i
j=0 a

jbi−j , which

is always nonnegative. This is simply because ai − bi always shares the same sign as a− b when i

is odd. Therefore I=σ2
1 +

∑
i≥3 odd σ

2
i
ai−bi
a−b > 0, ∀a.

Meanwhile, since ai−1 is always nonnegative for each odd i, we have II= σ2
1+
∑

i≥3 odd iσ
2
i a

i−1

is also always positive for any a.

Next, for activation like ReLU, loss g̃jk(z) = 1
2
(h(z)−h(z∗jk))

2, where h(x) = 1
π
(
√

1− x2+

(π − cos−1(x))x) [35]. Therefore h′(−1) = 0 for any z∗jk. This fact prevents us from getting the

same conclusion for ReLU.

1The zero component has been cancelled out.
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However, for leaky ReLU with coefficient of leakage α ∈ (0, 1), φ(x) = max{x, αx} =

(1− α)σ (()x) + αx.

We have

Ez∼N(0,Ik×k

[
φ(a>i z)φ(a>j z)

]
=(1− α)2

Ez σ (()a>i z)σ (()a>j z) + (1− α)αEz σ (()a>i z)a>j z

+ (1− α)αEz a
>
i zσ (()a>j z) + α2

Ez a
>
i za

>
j z

=(1− α)2h(a>i aj) + αa>i aj

Therefore for leaky ReLU g̃jk(z) = 1
2
((1 − α)2(h(z) − h(zjk∗)) + α(z − z∗jk))

2, and g̃′jk(z) =

((1−α)2(h(z)−h(zjk∗))+α(z−z∗jk))((1−α)2h′(z)+α). Now with α > 0, (1−α)2h′(z)+α ≥ α

for all z and g̃jk(z) = 0⇔ z = z∗jk.

To sum up, for odd activations and leaky ReLU, since each g̃jk(z) only has stationary point

of z = z∗jk, the stationary point Z of g̃(Z) =
∑

jk g̃jk also satisfy Z = Z∗ = A∗(A∗)>.

Proof of Theorem 4.5.3. Instead of directly looking at the second-order stationary point of Problem

1, we look at the following problem on its reparametrized version:

Problem 2.

minZ

g̃(Z) =
1

2

∥∥∥∥∥
∞∑
i=0

σ2
i

(
(Z∗)◦i − Z◦i

)∥∥∥∥∥
2

F


s.t. zii = 1,∀i.

Z � 0.

Here Z∗ = A∗(A∗)> and satisfies z∗ii = 1,∀i.
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Compared to function g in the original problem 1, it satisfies that g̃(AA>) ≡ g(A).

A matrix Z satisfies the first-order stationary point for Problem 2 if there exists a vector σ

such that: 
zii = 1,
Z � 0,
S � 0,
SZ = 0,
S = ∇Zg(Z)− diag(σ).

Therefore for a stationary point Z, since Z∗ = A∗(A∗)> � 0, and S � 0, we have

〈S,Z∗ − Z〉 = 〈S,Z∗〉 ≥ 0. Meanwhile,

〈Z∗ − Z, S〉

=〈Z∗ − Z,∇Zf(Z)− diag(σ)〉

=〈Z∗ − Z,∇Zf(Z)〉 (diag(Z∗ − Z) = 0)

=
∑
i,j

(z∗ij − zij)g′ij(zij)

=
∑
i,j

(zij − z∗ij)P (zij)(z
∗
ij − zij)

(Refer to proof of Lemma 4.5.2 for the value of g′)

=−
∑
ij

(zij − z∗ij)2P (zij)

≤0 (P is always positive)

Therefore 〈S,Z∗ − Z〉 = 0, and this only happens when Z = Z∗.

Finally, from [75] we know that any first-order stationary point for Problem 2 is a second-

order stationary point for our original problem 1 2. Therefore we conclude that all second-order

2Throughout the analysis for low rank optimization in [75], they require function g̃(Z) to be convex. However, by
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stationary point for Problem 1 are global minimum A: AA> = A∗(A∗)>.

C.2.4 Landscape Analysis for Non-unit Generating Vectors

In the previous argument, we simply assume that the norm of each generating vectors ai to

be 1. This practice simplifies the computation but is not practical. Since we are able to estimate

‖ai‖ for all i first, we could analyze the landscape of our loss function for general matrix A.

The main tool is to use the multiplication theorem of Hermite functions:

hαn(x) := hn(αx) =

bn
2
c∑

i=0

αn−2i(α2 − 1)i
(
n

2i

)
(2i)!

i!
2−ihn−2i(x).

For the ease of notation, we denote the coefficient as ηn,iα := αn−2i(α2 − 1)i
(
n
2i

) (2i)!
i!

2−i. We extend

the calculations for Hermite inner product for non-standard distributions.

Lemma C.2.2. Let (x, y) be normal variables that follow joint distribution N(0, [[α2, αβρ]; [αβρ, β2]]).

Then,

E[hm(x)hn(y)] =

{ ∑b l
2
c

i=0 η
l,i
α η

l,i
β ρ

l−2i if m ≡ n (mod 2)

0 o.w.
(C.2)

Here l = min{m,n}.

Proof. Denote the normalized variables x̂ = x/α, ŷ = y/β. Let l = min{m,n}.

E[hm(x)hn(y)]

=E[hαm(x̂)hβn(ŷ)]

carefully scrutinizing the proof, one could see that this condition is not required in building the connection of first-order
and second-order stationary points of g(A) and g̃(Z). For more cautious readers, we also show a relaxed version in
the next section, where the equivalence of SOSP of g and FOSP of g̃ is a special case of it.
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=

bm
2
c∑

i=0

bn
2
c∑

j=0

ηm,iα ηn,jβ E[hm−2i(x̂)hn−2j(ŷ)]

=

bm
2
c∑

i=0

bn
2
c∑

j=0

ηm,iα ηn,jβ δ(m−2i),(n−2j)ρ
n−2j (Lemma C.2.2)

=

{ ∑b l
2
c

i=0 η
l,i
α η

l,i
β ρ

l−2i if m ≡ n (mod 2)
0 o.w.

.

Now the population risk becomes

g(A) =
1

2

∥∥Ex∼D
[
xx>

]
− Ez∼N(0,Ik×k)

[
φ(Az)φ(Az)>

]∥∥2

=
1

2

∑
i,j∈[d]

(
Ez∼N(0,Ik0×k0 ) φ((a∗i )

>z)φ((a∗j)
>z)− Ez∼N(0,Ik×k) φ(a>i z)φ(a>j z)

)2

≡1

2

∑
i,j

g̃ij(zij).

To simplify the notation, for a specific i, j pair, we write x̂ = a>i z/α, α = ‖ai‖ and ŷ = a>j z/β,

where β = ‖aj‖. Namely we have (x̂, ŷ) ∼ N(0, [[1, ρ]; [ρ, 1]]), where ρ = cos〈ai,aj〉. Again,

recall φ(αx̂) =
∑

k odd σihi(αx̂) =
∑

k odd σih
α
i (x̂).

Ez∼N(0,Ik×k)[φ(αx̂)φ(βŷ)]

=E

[∑
m odd

σmh
α
m(x̂)

∑
n odd

σnh
β
n(ŷ)

]
=
∑

m,n odd

σmσn ES[hαm(x̂)hβn(ŷ)]

=
∑
m odd

σm
∑

n≤m odd

σn

bn
2
c∑

k=0

ηn,kα ηn,kβ ρn−2k
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Therefore we could write out explicitly the coefficient for each term ρk, k odd, as:

ck =
∑

n≥k odd

σnη
n,n−k

2
α η

n,n−k
2

β (
∑
m≥n

σm).

We have g̃ij(zij) = (
∑

k odd ckz
k
ij −

∑
k odd ck(z

∗
ij)

k)2.

Now suppose σi to have the same sign, and ‖αi‖ ≥ 1,∀ or ‖αi‖ ≤ 1,∀i, each coefficient

ci ≥ 0. Therefore still the only stationary point for g(Z) is Z∗.

C.3 Omitted Proofs for Sample Complexity
C.3.1 Omitted Proofs for Relation on Approximate Stationary Points

Proof of Lemma 4.6.7. We first review what we want to prove. For a matrix A that satisfies ε-

approximate SOSP for Eqn. (4.4), we define SA = ∇Z g̃(AA>) −
∑n

i=1 λiXi. The conditions

ensure that A, λ, SA satisfy:
Tr(A>XiA) = yi,
‖SAãi‖2 ≤ ε‖ãi‖2, {ãj}j span the column space of A
Tr(B>DA∇AL(A, λ)[B]) ≥ −ε‖B‖2

F , ∀B s.t. Tr(B>XiA) = 0.
(C.3)

We just want to show Z := AA>, σ := λ, and S := SA satisfies the conditions for ε-FOSP of Eqn.

(4.5). Therefore, by going over the conditions, its easy to tell that all other conditions automatically

apply and it remains to show SA � −εI .

By noting that∇AL(A, λ) = 2SAA, one has:

1

2
Tr(B>DA∇AL(A, λ)[B])

=Tr(B>SAB) + Tr(B>DA∇Z g̃(AA>)[B]A)−
n∑
i=1

DAλi[B]Tr(B>XiA)

(from Lemma 5 of [75])
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=Tr(B>SAB) + Tr(AB>DA∇Z g̃(AA>)[B]) (C.4)

(From Eqn. (C.3) we have Tr(B>XiA) = 0)

Notice that A ∈ R
d×k and we have chosen k = d for simplicity. We first argue when A is rank-

deficient, i.e. rank(A) < k. There exists some vector v ∈ Rk such that Av = 0. Now for any vector

b ∈ Rd, let B = bv>. Therefore AB> = Avb> = 0. From (C.4) we further have:

1

2
Tr(B>DA∇AL(A, λ)[B])

=Tr(B>SAB) + Tr(AB>DA∇Z g̃(AA>)[B])

=Tr(vb>SAbv>) = ‖v‖2b>SAb

≥− ε/2‖B‖2
F (from (C.3))

=− ε/2‖v‖2‖b>‖2

Therefore from the last three rows we have b>SAb ≥ −ε/2‖b‖2 for any b, i.e. SA � −ε/2Id×d.

On the other hand, when A is full rank, the column space of A is the entire Rd vector space, and

therefore SA � −εId×d directly follows from the second line of the ε-SOSP definition.

C.3.2 Detailed Calculations

Recall the population risk

g(A) ≡ 1

2

∥∥Ex∼D
[
xx>

]
− Ez∼N(0,Ik×k)

[
φ(Az)φ(Az)>

]∥∥2

F
.

Write the empirical risk on observations as:

gn(A) ≡ 1

2

∥∥∥∥∥ 1

n

n∑
i=1

xix
>
i − Ez∼N(0,Ik×k)

[
φ(Az)φ(Az)>

]∥∥∥∥∥
2

F

.
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Claim C.3.1.

∇g(A)−∇gn(A) = 2Ez

[
diag(φ′(Az))(X −Xn)φ(Az)z>

]
,

where X = Ex∼D[xx>], and Xn = 1
n

∑n
i=1 xix

>
i .

Proof.

∇g(A)−∇gn(A) = ∇(g(A)− gn(A))

=
1

2
∇
〈
X −Xn, X +Xn − 2Ez∼N(0,Ik×k)

[
φ(Az)φ(Az)>

]〉
=∇

〈
Xn −X,Ez∼N(0,Ik×k)

[
φ(Az)φ(Az)>

]〉
Now write S(A) = φ(Az)φ(Az)>.

[S(A+ ∆A)− S(A)]ij

=φ(a>i z + ∆a>i z)φ(a>j z + ∆a>j z)− φ(a>i z)φ(a>j z)

=φ′(a>i z)∆a>i zφ(a>j z) + φ′(a>j z)∆a>j zφ(a>i z) + O(‖∆A‖2)

Therefore

[S(A+ ∆A)− S(A)]i:

=φ′(a>i z)∆a>i zφ(Az)> + (φ′(Az) ◦∆Az)>φ(a>i z) + O(‖∆A‖2)

Therefore

S(A+ ∆A)− S(A) = diag(φ′(Az))∆Azφ(Az)> + φ(Az)z>∆A>diag(φ′(Az)). (C.5)

And

g(A+ ∆A)− gn(A+ ∆A)− (g(A)− gn(A))
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=〈Xn −X,Ez [S(A+ ∆A)− S(A)]〉

=Ez〈Xn −X, diag(φ′(Az))∆Azφ(Az)> + φ(Az)z>∆A>diag(φ′(Az))〉

=2Ez〈diag(φ′(Az))(Xn −X)φ(Az)z>,∆A〉.

Finally we have∇g(A)−∇gn(A) = 2Ez

[
diag(φ′(Az))(Xn −X)φ(Az)z>

]
.

Claim C.3.2. For arbitrary matrix B, the directional derivative of∇g(A)−∇gn(A) with direction

B is:

DA∇g(A)[B]−DA∇gn(A)[B]

= 2Ez

[
diag(φ′(Az))(Xn −X)φ′(Az) ◦ (Bz)z>

]
+2Ez

[
diag(φ′′(Az) ◦ (Bz))(Xn −X)φ(Az)z>

]
Proof.

g(A+ tB)

=2Ez

[
diag(φ′(Az + tBz))(Xn −X)φ(Az + tBz)z>

]
=2Ez

[
diag(φ′(Az) + t(Bz) ◦ φ′′(Az))(Xn −X)(φ(Az) + tφ′(Az) ◦ (Bz))z>

]
+ O(t2)

Therefore

lim
t→0

g(A+ tB)− g(A)

t

=2Ez

[
diag(φ′(Az))(Xn −X)φ′(Az) ◦ (B>z)z>

]
+ 2Ez

[
diag(φ′′(Az) ◦ (Bz))(Xn −X)φ(Az)z>

]
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C.3.3 Omitted Proofs for Observation Sample Complexity

Proof of Lemma 4.6.2. For each xi = φ(Azi), zi ∼ N(0, Ik×k). Each coordinate |xi,j| = |φ(a>j zi)| ≤

|a>j zi| since φ is 1-Lipschitz. 3. Without loss of generality we assumed ‖aj‖ = 1,∀j, therefore

a>j z ∼ N(0, Ik×k). For all i ∈ [n], j ∈ [d] |xi,j| ≤ log(nd/δ) with probability 1− δ.

Then by matrix concentration inequality ([159] Corollary 5.52), we have with probability

1−δ: (1−ε)X � Xn � (1+ε)X if n ≥ Ω(d/ε2 log2(nd/δ)). Therefore set n = Θ̃(d/ε2 log2(1/δ))

will suffice.

Proof of Lemma 4.6.3.

Xij = Ez∼N(0,Ik×k) φ(a>i z)φ(a>j z)

=

{
0 i 6= j
E[φ2(a>i z)] ≤ 2

π
i = j

Therefore ‖X‖2 ≤ 2
π

. Together with Lemma 4.6.2, ‖X −Xn‖ ≤ ε 2
π

w.p 1− δ. Recall

∇g(A)−∇gn(A) = 2Ez

[
diag(φ′(Az))(X −Xn)φ(Az)z>

]
:= 2Ez G(z),

whereG(z) is defined as diag(φ′(Az))(X−Xn)φ(Az)z>. We have ‖G(z)‖ ≤ ‖A‖‖z‖2‖X−Xn‖.

‖∇g(A)−∇gn(A)‖2 = 2‖Ez[G(z)]‖

≤ 2Ez ‖G(z)‖

≤ 2Ez ‖A‖‖z‖2‖X −Xn‖

≤ 2‖A‖ε 2

π
Ez ‖z‖2

3For simplicity, we analyze as if φ(0) = 0 w.o.l.g. throughout this section, since the bias term is canceled out in the
observation side with φ(A∗z) and the learning side with φ(Az).
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= 2‖A‖εd 2

π

For the directional derivative, we make the concentration bound in a similar way. Denote

D(z) = diag(φ′(Az))(Xn −X)φ′(Az) ◦ (Bz)z> + diag(φ′′(Az) ◦ (Bz))(Xn −X)φ(Az)z>.

‖D(z)‖ ≤ ‖Xn −X‖2‖B‖‖z‖2(1 + ‖z‖‖A‖).

Therefore ‖DA∇g(A)[B]−DA∇gn(A)[B]‖ ≤ O(εd3/2‖A‖‖B‖) with probability 1− δ.

C.3.4 Omitted Proofs on Bounding Mini-Batch Size

Recall

g̃m,n(A) ≡ 1

2

∥∥∥∥∥ 1

n

n∑
i=1

xix
>
i −

1

m

m∑
j=1

φ(Azj)φ(Azj)
>

∥∥∥∥∥
2

F

.

Write Sj(A) ≡ φ(Azj)φ(Azj)
>. Then we have

g̃m,n(A) =
1

2

〈
Xn −

1

n

m∑
j=1

Sj(A), Xn −
1

m

m∑
j=1

Sj(A)

〉

=
1

2m2

∑
i,j

〈Si(A), Sj(A)〉 − 1

n

m∑
j=1

〈Sj(A), Xn〉+
1

2
‖Xn‖2

F

On the other hand, our target function is:

gn(A) ≡1

2

∥∥∥∥∥ 1

n

n∑
i=1

xix
>
i − Ez∼N(0,Ik×k)

[
φ(Az)φ(Az)>

]∥∥∥∥∥
2

F

=
1

2
‖ES[S]‖2

F − 〈ES[S], Xn〉+
1

2
‖Xn‖2

F

Therefore ES g̃m,n(A)− gn(A) = 1
2m

(ES ‖S(A)‖2
F − ‖ES S(A)‖2

F ).
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Claim C.3.3.

∇ES g̃m,n(A)−∇gn(A) =
2

m
Ez

[
diag(φ′(Az))S(A)φ(Az)z> − diag(φ′(Az))ES[S(A)]φ(Az)z>

]
.

Proof.

〈∇ES g̃m,n −∇gn,∆A〉

=ES g̃m,n(A+ ∆A) + gn(A+ ∆A)− (ES g̃m,n(A) + gn(A)) + O(‖∆A‖2)

=
1

2m

(
ES ‖S(A+ ∆A)‖2

F − ES ‖S(A)‖2
F − ‖ES S(A+ ∆A)‖2

F + ‖ES S(A)‖2
F

)
+ O(‖∆A‖2)

=
1

m
(ES〈S(A), S(A+ ∆A)− S(A)〉 − 〈ES[S(A)], ES[S(A+ ∆A)− S(A)]) + O(‖∆A‖2)

=
1

m

(
〈Ez〈S(A), diag(φ′(Az))∆Azφ(Az)>〉 − 〈ES[S(A)],Ez diag(φ′(Az))∆Azφ(Az)>〉

)
+ O(‖∆A‖2) (from Eqn. (C.5) and symmetry of S)

=〈 2

m
Ez

[
diag(φ′(Az))S(A)φ(Az)z> − diag(φ′(Az))ES[S(A)]φ(Az)z>

]
,∆A〉+ O(‖∆A‖2)

Similarly to the derivation in the previous subsection, we again derive the bias in the

directional derivative:

Claim C.3.4. For arbitrary matrix direction B,

DA∇ES g̃m,n(A)[B]−DA∇gn(A)[B]

=
2

m
Ez

[
diag(φ′′(Az) ◦ (Bz))(S(A)− ES S(A))φ(Az)z>

+ diag(φ′(Az))
(
(φ′(Az) ◦ (Bz))φ(Az)> − Ez[(φ′(Az) ◦ (Bz))φ(Az)>]

)
φ(Az)z>

+ diag(φ′(Az))
(
φ(Az)(φ′(Az) ◦ (Bz))> − Ez[φ(Az)(φ′(Az) ◦ (Bz))>]

)
φ(Az)z>

+ diag(φ′(Az))(S(A)− ES S(A))(φ′(Az) ◦ (Bz))z>
]
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C.3.5 Omitted Proof of the Main Theorem

Proof of Lemma 4.6.8. On one hand, suppose Z is an ε-FOSP property of g̃ in (4.5) along with the

matrix S and vector σ, we have:

〈∇g̃(Z), Z − Z∗〉

=〈S,Z − Z∗〉

(since Z − Z∗ has 0 diagonal entries)

≤‖PT (S)‖2‖PT ◦(Z − Z∗)‖F

(T is the tangent cone of PSD matrices at Z)

≤‖PT (S)‖2‖Z − Z∗‖F

= max
j
{ã>j Sãj}‖Z − Z∗‖F

(ãj is the basis of the column space of Z )

≤ε‖Z − Z∗‖F (C.6)

(from the definition of ε-FOSP)

On the other hand, from the definition of g̃, we have:

〈Z − Z∗,∇g̃(Z)〉

=
∑
ij

(zij − z∗ij)g̃′ij(zij)

=
∑
ij

(zij − z∗ij)2
∑
k odd

σ2
kPk(zij)

∑
k odd

σ2
kkz

k−1
ij

≥‖Z − Z∗‖2
Fσ

4
1 (C.7)

Here polynomial Pk(zij) ≡ (zkij − (z∗ij)
k)/(z − z∗) is always positive for z 6= z∗ and k to be odd.
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Therefore by comparing (C.6) and (C.7) we have ε‖Z − Z∗‖F ≥ ‖Z − Z∗‖2
Fσ

4
1 , i.e.

‖Z − Z∗‖F ≤ O(ε).

Proof of Theorem 4.6.9. From Theorem 31 from [57], we know for small enough learning rate η,

and arbitrary small ε, there exists large enough T , such that Algorithm 3 generates an output A(T )

that is sufficiently close to the second order stationary point for f . Or formally we have,
Tr((A(T ))>XiA

(T )) = yi,
‖(∇Af(A(T ))−

∑
i=1 λiXiA

(T )):,j‖2 ≤ εmin ‖Aj,:‖2, ∀j ∈ [k]
Tr(B>DA∇ALf (A

(T ), λ)[B]) ≥ −ε‖B‖2
2, ∀B, s.t.Tr(B>XiA) = 0

Lf (A, λ) = f(A) −
∑d

i=1 λi(Tr(A>XiA) − yi). Let {ãi = A(T )ri}ki to form the basis of

the column vector space of A(T ). Then the second line is a sufficient condition for the following:

‖ã>j (∇Af(A(T ))−
∑

i=1 λiXiA
(T ))rj‖2 ≤ ε,∀j ∈ [k].

Now with the concentration bound from Lemma 4.6.4, suppose our batch size m ≥ O(d5/ε),

we have ‖∇Agn(A(T )) − ∇Af(A(T ))‖2 ≤ ε, and ‖DA∇Agn(A(T ))[B] − DA∇Af(A(T ))[B]‖2 ≤

ε‖B‖2 for arbitrary B. Therefore again we get:
Tr((A(T ))>XiA

(T )) = yi
‖ã>j (∇Agn(A(T ))−

∑
i=1 λiXiA

(T ))rj‖2 ≤ 2ε, ∀j ∈ [k]
Tr(B>DA∇ALgm(A(T ), λ)[B]) ≥ −2ε‖B‖2

2, ∀B, s.t.Tr(B>XiA) = 0

Next we turn to the concentration bound from Lemma 4.6.3. Suppose we have when the

sample size n ≥ O(d5/ε2 log2(1/δ)), ‖DA∇Ag(A)[B] − DA∇Agn(A)[B]‖2 ≤ O(ε‖B‖2), and

‖∇g(A) − ∇gn(A)‖2 ≤ O(ε) with probability 1 − δ. Therefore similarly we get A(T ) is an

O(ε)-SOSP for g(A) = 1
2

∥∥∑∞
i=0 σ

2
i

(
(A∗(A∗)>)◦i − (AA>)◦i

)∥∥2

F
.

Now with Lemma 4.6.7 that connects the approximate stationary points, we have Z :=

A(T )(A(T ))> is also an ε-FOSP of g̃(Z) = 1
2
‖
∑∞

i=0 σ
2
i ((Z∗)◦i − Z◦i)‖2

F .
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Finally with Lemma 4.6.8, we get ‖Z − Z∗‖F ≤ O(ε).
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