

Background

> Federated learning (FL) :a distributed framework allows machine learning models to be trained on data via a gradient. Clients perform local optimization before sending the models back to the central model for updating; data is never shared and remains secure.

> With the addition of a **generative model** pre-trained on the underlying data distribution, privacy can easily be breached. We aim to show that the same technique of gradient inversion performed on medical image data can also be applied to tabular data.

Introduction

Dataset: This project utilizes multiple datasets and evaluates the performance of gradient inversion on medical image data and tabular medical record data.

- > MIMIC-III large, freely-available database comprising de-identified health records associated with over 40,000 patients who stayed in critical care units of the Beth Israel Deaconess Medical Center between 2001 and 2012.
- > MedMNIST v2 large-scale MNIST-like database of standardized biomedical images. All images are preprocessed into 28x28 (2D) and 28x28x28 (3D) and contain classification labels.

Objectives: We sought to explore two main goals:

- Replication of gradient inversion on 2D MedMNIST medical image data
- 2. Application and improvement on gradient inversion on medical tabular data

Data Overview and Preprocessing

- > MIMIC-III The data used for the gradient inversion was preprocessed for in-hospital mortality, following the instructions for building benchmark tasks provided by Harutyunyan et al. [2]. The data was transformed into time-series data, with dimension of 48 timestamps and 76 features.
- > MedMNIST The data used for this analysis was BreastMNIST, which is based on a dataset of 780 breast ultrasound images. There are two classes: positive (normal and benign) and negative (malignant).

The image reconstruction and tabular data reconstruction methods are based on a gradient inversion implementation by Jeon et al. [3]. The former uses a generative image prior, which is learnable via interactions in FL.

Gradient Inversion:

- > Update our generated inputs

Total Varia	tion
Binary Constr	aint
Nuclear No	orm

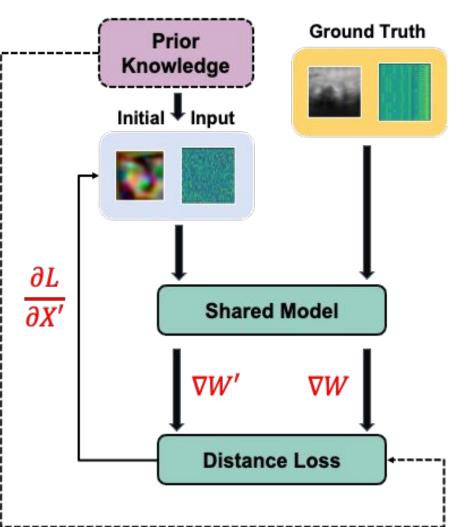
For the **image reconstruction**, we implemented a StyleGAN2 image generator trained on MedMNIST with varying batch sizes. For tabular data reconstruction, the input was generated by Gaussian Distribution, with mean and variance derived from training data.

During the gradient inversion process, we improved the similarity between predicted inputs and ground truth by implementing

 $L(\hat{x}, x) = Sim(\hat{x}, x) + \alpha_{TV}R_{TV}(\hat{x}) + \alpha_{BC}R_{BC}(\hat{x}) + \alpha_{NN}R_{NN}(\hat{x})$

Bayesian optimization was applied to find best alphas.

Medical Data Leakage via Gradient Inversion


Group Members: Christine Gao, Ciel Wang, Yuqi Zhang Mentors: Professor Qi Lei, Professor Jacopo Cirrone

Related Work

Approach

> Using **prior knowledge** (pretrained models, known Gaussian Distribution) to initialize inputs > Obtain gradients from initialized and original input \succ Minimize the **loss** between two inputs

4 STEPS of Gradient Inversion

• Total variation(neighbors pixels should be similar) [5] • Binary Constraint(for known binary columns) • Nuclear Norm(increase sparsity)

For the **tabular data reconstruction**, we utilized the naive version of gradient inversion introduced by Jeon et al.[3] as a **baseline**, and applied our method incorporating prior knowledge to optimize the data reconstruction.

With hyperparameters selected by Bayesian Optimization, after 5000 epochs with learning rate 0.01 and cosine annealing learning rate,

Mo Na Ti T Be

- Our models outperforms by 10% comparir \succ
- > Prior Knowledge works:
 - Initialized inputs under estimated dis
 - Nuclear norm and total variation are smaller scale.
 - Binary constraint is ineffective due to requirement for the conversion of logi variables.

From the **image reconstruction** results, **batc** 4 had the best recorded PSNR (ratio of maxi value of pixel to noise) indicating lower error

Future Works

- > Larger Datasets: Applying gradient invers larger and more complex datasets, going black-and-white medical images
- > Attack on defensive methods: Applying inversion against perturbation on gradient

[1] Geiping, J., Bauermeister, H., Dröge, H., & Moeller, M. (2020). Inverting gradients-how easy is it to break privacy in federated learning? arXiv: 2003.14053 [cs.CV]

[2] Harutyunyan, H. Khachatrian, H., Kale, D., Steeg, G., and Galstyan, A. (2019). *Multitask learning and benchmarking with* clinical time series data. Scientific data, 6(1):96.

[3] Jeon, J., Kim, J., Lee, K., Oh, S., & Ok, J. (2021). *Gradient Inversion with Generative Image Prior. arXiv: 2110.14962.*

[4] Purushotham, S., Meng, C., Che, Z., & Liu, Y. (2018). Benchmarking deep learning models on large healthcare datasets. arXiv:1710.08531 [cs.LG]

[5] Wang, Z., Jason D. Lee, Qi Lei. (2022). *Reconstructing Training Data From Model Gradient*, *Provably. arXiv: 2212.03714*. [6] Zhang, R., Guo, S., Wang, J., Xie, X., & Tao, D.(2022). A survey on gradient inversion: Attacks, defenses and future

directions. arXiv preprint arXiv:2206.07284.

Results & Discussion

Ground Turb		10 20 30 40	Iternediate	0 	Pedicted	
Ground	Truth	70 0 10	Baseline Resu	Best Result		
Iodel	Decay	Total Variation	Binary Constraint	Nuclear Norm	FMSE	Similarity
Vaive(randn) Frial1(gaussian) Frial2(gaussian) Best(gaussian)	linear cosine cosine cosine	.1 .00231 .00025 .00014	0 .31178 0 .000000	0 .00051 .00001 .00001	6.9194e-01 8.7416e-06 2.0753e-07 6.3996e-06	.89302 .99689 .99915 .99916

ng to baseline.	Table 2: Performance Results for Reconstructed Images						
	Batch Size	PSNR	MSE	sim_cost (1 - loss)		
stribution.	1	14.282	0.0389	1.	0		
effective in	2	15.313	0.0324	0.965			
	4	15.235	0.0311	0.9	65		
o a threshold	8	14.433	0.0404	1.	0		
gits into binary	32	14.400	0.0405	1.	0		
	Ground Tr	ruth vs R	Reconstr	ucted ima	ges with		
ch size of	Pretrained StyleGAN with batch size of 4						
kimum	100 C	1000	-	The second second	A DESCRIPTION OF A DESC		
or.			1				
	malignant (0)	malignan	t (0) n	ormal (1)	malignant (0)		
	test_10_gt	test_11_	_gt t	est_12_gt	test_13_gt		
rsion to							
g beyond	-	1	83	100			
gradient nts			1				
	test_10	test_1	1	test_12	test_13		
References							